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URBAN HEAT AND LAND SURFACE
TEMPERATURE

* Over 50% of the world’'s population already live within urban areas

* Their thermal environments, and increasing heat affects our infrastructure and
our health

« Remote sensing of Land Surface Temperatures (LSTs) provides a way of
studying these environments with spatially averaged data at high resolution,
across wide areas.

 Many LST retrievals currently rely on auxiliary datasets to provide prior

knowledge of surface and atmosphere parameters, specifically the Land Surface
Emissivity (LSE).

* To address the gap in this information over cities, a novel thermal-based
classification algorithm is presented.



Satellite data

Within urban environments, high
resolution (ideally sub 100m) LST
measurements are required as
temperatures can vary considerably
across cities and their sub-urban or
rural surrounds

To achieve this data is acquired from
Landsat 8 & 9 satellites

Spectral libraries

ECOSTRESS & SLUM spectral

libraries are used to acquire VIS /
SWIR and TIR data from samples

The ECOSTRESS library is then
extended by creating mixed samples
In ratios of 25%, 50% and 75%
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CLASSIFICATION
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The 8 output
classifications:

Dense urban,
Mid density urban,

Dense vegetation,

Mid density
vegetation,

Bare soil



CLASSIFICATION

Low Density Vegetation

Medium Density Vegetation
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EMISSIVITY

In order to provide
a prior emissivity
from the output
classification
samples from the
spectral libraries
are used, and their
relationships to VIS
/ SWIR parameters
are investigated
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EMISSIVITY
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Materials were split into three different types

A regression between a unique VIS/SWIR
parameter and the samples emissivity was then fit
for each type

This allows for three initial emissivity estimations
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EMISSIVITY

Classification Percentage of emissivity / index relationship
Urban Vegetation Soil
Dense Urban 0.952 0.048 0.0
Mid Urban 0.619 0.381 0.0
Low Urban 0.389 0.611 0.0
Low 0.120 0.880 0.0
Vegetation
Mid Vegetation 0.066 0.934 0.0
Mean values of the VIS / SWIR \[j:;;eation 00 L0 00
parameters are calculated per Coastal 0419 00 0581
classification, these are then normalised Bare Soil 0.401 0.122 0.476

over their range and scaled such that
their total sums to 1 but their ratios are
maintained



EMISSIVITY
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EMISSIVITY
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Where x4, x,, x3 are the relationships between emissivity and the library
sample indices, and a, b, c are the amounts of each relationship that are
taken into account for the given classification

If you consider x,, x3 to be urban and soil relationships respectively

(because these will have a correlation component as they are both based
on the SWIR channels) then total uncertainty is found by:
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and (a—f) = a, (a—f) = b, (a—f) = ¢, so this can be simplified to:
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EMISSIVITY
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Two additional prior LSE methods:

1) NDVI Method by (Sobrino and
Raissouni, 200)

0.98 — 0.042p NDVI < 0.2
LSE = {e,P,+ e(1—P,)+ d, 0.2<NDVI<0.5
0.99 0.5 < NDVI

2) Combined ASTER and MODIS
Emissivity for Land (CAMEL)
database



Temperature (K)
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LST

Thermal

Site Classification NDVI Method CAMEL

RMSE RMSE RMSE
Bondyville, Illinois 3.84 4.83 413
Desert Rock, Nevada 3.3 3.16
Fort Peck, Montana 4.03 3.74 3.41
Goodwin Creek, 2.98 4.15 3.88

Mississippi
Hyytiala, Finland 4.02 4.08 4.39
KIT Forest, Germany 2.09 2.37 2.61
Penn State Unlv.er5|ty, 2 85 318 3.24
Pennsylvania

Puechabon, France 2.61 2.7 2.66
Robson Creek, Australia 2.16 4.32 4.3
Sioux Falls, South Dakota 3.18 4.21 3.51
Svartberget, Sweden 2.89 4.23 4.4
Wicken Fen, UK 3.23 1.87 3.28
Wytham Woods, UK 2.09 3.55 2.35

Landsat LST using GSW was

calculated using two additional

prior LSE methods:

1) NDVI Method by (Sobrino and
Raissouni, 200)

0.98 — 0.042p NDVI < 0.2
LSE=:e,P,+ ¢(1—P,)+ d. 0.2<NDVI<O0.5
0.99 0.5 < NDVI

2) Combined ASTER and MODIS
Emissivity for Land (CAMEL)
database

Results show consistently better
RMSE values when using the
thermal classification



URBAN HEAT ISLAND
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Created LSEs are used
within a bespoke LST
downscaling method
developed at the
University of Leicester.
This method utilises
optimal estimation to
transform data from
MODIS at native Tkm
resolution data to 100m,
allowing for greater
temporal understanding
of how LSTs across
cities vary

DOWNSCALING

For more information
on the OE algorithm
that the Downscaling is
based on please see

Ben Courtier - 7The
Land Surface
Temperature Retrieval
Algorithm for LSTM: An
Overview and Results

8:30am FRIDAY
A.02.01 PART 1
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Thanks!

Please feel free to contact:

Charlotte Paton
cjpobé@leicester.ac.uk
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