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The need for validation 
GCOS Implementation Plan (2016) 

Property Threshold Goal

Accuracy/Precision < 1 K < 1 K

Stability 0.3 K decade-1 0.1 K decade-1

Satellite LST retrieval uncertainty sources

Instrumental
• Detector noise
• ISRF
• Geolocation

Atmospheric
• H2O
• Other trace gases
• Atmospheric temperature

Scene
• Surface emissivity
• Shadows
• Cloud cover

Definitions
• Accuracy: closeness of the agreement 

between the measured LST and the truth
• Precision: closeness of the agreement 

between the results of successive LST 
measurements

• Stability: Long-term drift due to 
degradation in instrument accuracy

Why in situ LST? 
• Need for validation over different 

biomes/climates
• Direct comparison of measured LST 

possible
• Both upwelling and downwelling 

radiances can be measured directly – 
no RTM required to retrieve LST



The CEOS LST Validation Protocol

https://lpvs.gsfc.nasa.gov/PDF/CEOS_LST_PROTOCOL_Feb2018_v1.1.0_light.pdf



In situ LST retrievals

𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔,λ 𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈,λ

𝜺𝜺λ,𝑳𝑳𝑳𝑳𝑳𝑳

• Land surface radiance (B):

𝑩𝑩 =
𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈,λ − 𝟏𝟏 − 𝜺𝜺λ � 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔,λ

𝜺𝜺λ

• For narrow-band instruments:

𝑳𝑳𝑳𝑳𝑳𝑳 =
𝟐𝟐 � 𝒉𝒉 � 𝒄𝒄𝟐𝟐

𝝀𝝀 � 𝐥𝐥𝐥𝐥 𝒉𝒉 � 𝒄𝒄 
𝑩𝑩 � 𝒌𝒌 � 𝝀𝝀𝟓𝟓 + 𝟏𝟏

• For broadband instruments:

𝑳𝑳𝑳𝑳𝑳𝑳 =
𝟒𝟒 𝑩𝑩
𝝈𝝈



The 8 – 14 µm atmospheric window

https://www.apogeeinstruments.com/content/SI-100-400-spec-sheet.pdf



- Chopped pyrometer (measures 
both target and internal radiance for 
greater accuracy) 

- FOV: 16°/29°/66° (interchangeable 
lenses)

- Spectral band: 9.6 – 11.5 µm
- Accuracy: 0.5 K (+ 0.7% of target-to-

sensor temperature difference)
- Stability: < 0.1% year-1

- Cost: ~£6500
- Power: 3.5 W (10.5 – 30 V DC), or 

24 V AC

Radiometers II: Heitronics KT15.85 IIP

https://www.heitronics.com/en/product/radiation-
thermometer/versatile-specialists/kt15-iip/



- Thermopile radiation detector + 
reference thermistor for sensor 
temperature measurement

- FOV: 18°
- Spectral band: 8 – 14 µm
- Accuracy: 0.2 - 0.5 K (target – 

detector temperature bias 
dependent)

- Precision: 0.05 K 
- Stability: < 2% yr-1

- Cost: ~£400 
- Power: 2.5 V DC (excitation only)

Radiometers I: Apogee Instruments SI-121-SS

https://www.apogeeinstruments.com/si-121-ss-research-
grade-narrow-field-of-view-infrared-radiometer-sensor



- BT measured by this instrument (𝑻𝑻𝑻𝑻) is a 
function of both sensor temperature (𝑻𝑻𝑫𝑫) 
and thermopile voltage (𝑽𝑽𝑫𝑫):

𝑻𝑻𝑻𝑻 =
𝟒𝟒

𝑻𝑻𝑫𝑫𝟒𝟒 + 𝒎𝒎 � 𝑽𝑽𝑫𝑫 + 𝒃𝒃

- Where:

- 𝒎𝒎 = 𝒎𝒎𝒎𝒎𝒎𝒎 � 𝑻𝑻𝑫𝑫𝟐𝟐 + 𝒎𝒎𝒎𝒎𝒎𝒎 � 𝑻𝑻𝑫𝑫 +𝒎𝒎𝒎𝒎𝒎𝒎

- 𝒃𝒃 = 𝒃𝒃𝒃𝒃𝒃𝒃 � 𝑻𝑻𝑫𝑫𝟐𝟐 + 𝒃𝒃𝒃𝒃𝒃𝒃 � 𝑻𝑻𝑫𝑫 +𝒃𝒃𝒃𝒃𝒃𝒃

- mC0, mC1, etc. obtained from varying 
blackbody and ambient temperature – 
difficult to recalibrate alone!

- Due to drift, it’s recommended to return 
instrument for recalibration every 2 years. 

Radiometers I: Apogee Instruments SI-121-SS

https://www.apogeeinstruments.com/si-121-ss-research-
grade-narrow-field-of-view-infrared-radiometer-sensor



- Multi-channel radiometer (filter 
wheel)

- FOV: 10° 
- Spectral bands: 8 – 14, 8.2 – 9.2, 

10.3 – 11.3, 11.5 – 12.5 µm (ASTER 
and other bands possible on request)

- Accuracy: 0.1 K
- Cost: ~£30,000
- Power: mains electricity (AC, 

charges battery for short-term 
campaigns)

- Must be connected to Windows PC 
at all times 

Radiometers III: Cimel CE312

https://www.cimel.fr/ce312/



- Net radiometer (hemispherical 
pyrgeometer), which  simultaneously 
measures 𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 and 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 using 2 
thermopiles

- FOV: 180°
- Spectral band: 4.5 – 42 µm 

(broadband)
- Stability: < 1% year-1 
- Power: 15 W (ventilator & heater)
- Cost: ~£6000

Radiometers IV: Kipp & Zonen CNR4 

https://www.kippzonen.com/Product/85/CNR4-Net-Radiometer



Laboratory calibration



Deploying radiometers in the field 

Apogee SI-121-SSHeitronics KT15.85 IIP

𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈,λ
𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔,λ



The Campbell Scientific CR310 data logger
- Cost: ~£1200

- Storage: 30 MB flash memory (+1 year) 

- Measures both analogue voltage (-0.1 – 2.5 
V, DIFF 1 - 3) and current (0 – 20 mA, SE1 
and SE2) signals 

- Switched 12 V DC terminal (SW12V) for 
powering sensors 

- 2 sensor excitation (0.15 – 5 V) terminals 
(VX1 & VX2) 

- Programmable using proprietary CRBasic 
language (incl. thermistor voltage to 
temperature functions)

- Ethernet and RS232 ports (variants with 
cellular modem also available)

- Can transmit data either via USB, or internet 
protocols (FTP, HTTP)



Wiring the SI-121-SS

VX1
Ground

Ground

SE5

SE3

SE4

https://www.apogeeinstruments.com/content/SI-100-manual.pdf



Programming the SI-121-SS
'Declare public variables (Apogee) 

Public SBTempC, SBTempK, TargmV, m, b, TargTempK, TargTempC

'Declare original calibration constants for the Apogee  

Const mC2 = 158421.0

Const mC1 = 17997500.0

Const mC0 = 2998800000.0

Const bC2 = 9639.19

Const bC1 = -257712.0

Const bC0 = -11914800.0



Programming the SI-121-SS
'Define data table (Table_op will contain the mean data recorded every 60 seconds) 

DataTable (Table_op,1,-1)   

   DataInterval (0,60,Sec,0)   

   Average (1,TargTempK,FP2,False)

EndTable 

'Main program (program is making a measurement every 2 seconds) 

BeginProg 

Scan (2,Sec,0,0) 

'Instruction to measure sensor body temperature in C (green to SE5, red wire to VX1, blue wire to 
ground)     

Therm109 (SBTempC,1,5,VX1,0,_60Hz,1.0,0)



Programming the SI-121-SS
'Instruction to measure mV (-2.2 – 2.2 mV) output of thermopile detector (white wire to 2H, black wire 
to 2L, clear wire to ground)     

VoltDiff (TargmV,1,mV34,2,True ,0,60,1.0,0)

'Calculation of m (slope) and b (intercept) coefficients for target temperature calculation     

m = mC2 * SBTempC^2 + mC1 * SBTempC + mC0     

b = bC2 * SBTempC^2 + bC1 * SBTempC + bC0 

'Calculation of target temperature     

SBTempK = SBTempC + 273.15     

TargTempK = ((SBTempK^4) + m * TargmV + b)^0.25



Programming the SI-121-SS
'Call output tables and proceed to next scan     

CallTable Table_op   

NextScan 

EndProg



Wiring the KT15.85 IIP

Role Heitronics wire CR310 terminal

Analogue power input
Brown (+) SW12V
White (-) Ground

Analogue current output
Yellow (+) SE1
Green (-) Ground



Programming the KT15.85 IIP
'Declare public variables (Heitronics)

Public Heitronics

'Define data table (table is outputting data every 60 seconds; taking the mean of every 10 sec of 
observations) 

DataTable (Table_op,1,-1)   

   DataInterval (0,60,Sec,10)   

   Average (1,Heitronics,FP2,False)

EndTable 



Programming the KT15.85 IIP
'Main program

BeginProg 

‘Activate 12 V DC current to Heitronics 

  SW12 (2)

‘Take measurement every 2 seconds

  Scan (2,Sec,0,0) 



Programming the KT15.85 IIP
'Main program

BeginProg 

‘Activate 12 V DC current to Heitronics 

  SW12 (2)

‘Take measurement every 2 seconds

  Scan (2,Sec,0,0) 



Programming the KT15.85 IIP
'Measures current output from Heitronics, and converts to temperature (yellow - 1H, green - ground)

‘The current signal varies between 0 – 20 mA, linearly scaling to a temperature range between -25 – 
200 °C, so we use a multiplier: 225 / 20 = 11.25, and offset: -25.0 to convert directly to temperature

CurrentSe (Heitronics,1,mV2500,1,0,500,50,11.25,-25.0)

Heitronics = Heitronics + 273.15

'Call output tables and proceed to next scan     

CallTable Table_op   

NextScan 

EndProg



Combined wiring diagram



Live demonstration



Field estimation of ε – “The one lid box”

- Uncorrected emissivity (𝜺𝜺𝟎𝟎):

𝜺𝜺𝟎𝟎 =
𝑳𝑳𝑩𝑩𝑩𝑩 − 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔
𝑳𝑳𝟐𝟐 − 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔

- Need to add correction term (δε) to correct for influence of the box on radiance measurements (R = 0.265):

𝜹𝜹𝜹𝜹 = 𝟏𝟏 − 𝜺𝜺𝟎𝟎 𝟏𝟏 − 𝑳𝑳𝟐𝟐−𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔
𝑳𝑳𝟐𝟐−𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔−𝑹𝑹 𝑳𝑳𝟐𝟐−𝑩𝑩𝑪𝑪

 

Clear sky 
conditions

• Highly polished aluminium 
box lid (ε = 0.03)

• Dimensions: 30 × 30 × 80 cm

• Radiometer viewing angle: 5° 
to avoid viewing own 
reflection



The Combined ASTER and MODIS Emissivity over Land (CAMEL) 
dataset

- In the absence of available in situ measurements, or in the case of heterogeneous 
land cover, consider using satellite-derived values for ε.

- The NASA-JPL/University of Wisconsin-Madison CAMEL dataset merges MODIS 
+ ASTER ε data to produce a global monthly 5 km dataset 

- Data is provided over 13 hinge points based on MODIS + ASTER spectral bands:  
3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 8.6, 9.1, 10.6, 10.8, 11.3, 12.1, and 14.3 µm

- Temporal range: March 2000 – December 2023
- Broadband emissivity (BBE) from CAMEL is available between 2000 – 2015
- If LST (𝑻𝑻𝒔𝒔) is known, the BBE can be calculated from CAMEL data using:

𝜺𝜺𝑩𝑩𝑩𝑩𝑩𝑩 =
∫𝝀𝝀𝟏𝟏
𝝀𝝀𝟐𝟐 𝜺𝜺𝝀𝝀𝑩𝑩𝝀𝝀 𝑻𝑻𝒔𝒔 𝒅𝒅𝝀𝝀

∫𝝀𝝀𝟏𝟏
𝝀𝝀𝟐𝟐 𝑩𝑩𝝀𝝀 𝑻𝑻𝒔𝒔 𝒅𝒅𝝀𝝀



Deployment notes: 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 
- Measuring 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 can be done in 3 ways:

1. Zenith-sky measurement: 
- Empirical conversion from sky BT to 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔

𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 = 𝟏𝟏.𝟑𝟑 � 𝑩𝑩 𝑻𝑻 𝟎𝟎𝟎

2. Representative viewing angle: 
- Measure sky BT at a viewing zenith angle of ~53°
- AVOID THE SUN – point the SI-121-SS away from the equator!

3. Ground measurement of a diffuse gold plate or crinkled aluminium 
foil

- High reflectivity; negligible contamination of the measured BT



Deployment notes: 𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 
- Radiometers should be traceably calibrated to within ±0.3 K against a reference 

blackbody before deployment
- Nadir viewing angle should be 0 – 30° to minimise angular variation of 𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈
- Avoid obstructions (trees, buildings, etc.)
- If the focus is validating LEO satellite missions, ensure that the instrument FoV is 

clear of shadows from the measurement tower, trees, etc. during the satellite 
daytime overpasses (10:30 AM – 1:30 PM) 

- : 𝑳𝑳𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 and 𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 should be measured simultaneously at the same site 

- Measure BTs every 1 minute to minimise temporal matchup uncertainties with 
the satellite overpass

- Observed FoV must be representative of the satellite ground pixel area
- Homogeneous land cover within 3 × 3 ground pixel grid preferable



Example siting: Robson Creek (Australia)



Example siting: KIT (Germany)



Validation & Hampel filtering
- Validation is performed via direct comparison between in situ LST with 

satellite LST data from a suitably representative ground pixel. 
- Temporal interpolation from in situ to satellite overpass time (UTC) 

necessary before comparison
- Unflagged cloudy pixels will introduce large outliers to any 

comparison. Before comparing data, filter these out using a Hampel filter:
1. Compute median of satellite – in situ LST bias for all matchups
2. Calculate standard deviation (𝝈𝝈) of the median bias
3. Filter out points where: 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑳𝑳𝑳𝑳𝑳𝑳𝑰𝑰𝑰𝑰 < 𝟐𝟐𝝈𝝈



Validation & Hampel filtering

Effect of the 3σ-Hampel filter on time series of matched-up LSA SAF LST and in 
situ LST (Gobabeb main station): (a) linear regression of unfiltered LST for July 
2010 and (b) linear regression of 3σ-Hampel filtered LST for July 2010. From 
Gottsche et al, 2013



Useful validation statistics

- Accuracy: 𝝁𝝁 = Mdn 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑳𝑳𝑳𝑳𝑳𝑳𝑰𝑰𝑰𝑰
- Precision: 𝝈𝝈 = Mdn 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑳𝑳𝑳𝑳𝑳𝑳𝑰𝑰𝑰𝑰 − 𝝁𝝁
- Gradient and intercept using Orthogonal Distance 

Regression
- Number of matchups removed using Hampel filter
- Time series analysis of bias over time 
- RMSE of 𝑳𝑳𝑳𝑳𝑳𝑳𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑳𝑳𝑳𝑳𝑳𝑳𝑰𝑰𝑰𝑰
- Separate analyses for daytime and night-time overpasses 



Example: Puechabon (France), Oct 2021 – Oct 2022



Example: Puechabon (France), Oct 2021 – Oct 2022



Existing validation networks – SURFRAD and ARM 

https://gml.noaa.gov/grad/surfrad/overview.html



Existing validation sites – SURFRAD and ARM 

Wang and Liang, Remote Sensing of Environment, 2009



Existing validation networks – USCRN

https://www.arl.noaa.gov/news-pubs/arl-news-stories/field-notes-uscrn/



Existing validation networks – USCRN

Thorne et al, International Journal of Climatology, 2018



Existing validation networks – KIT

https://www.imk-asf.kit.edu/english/skl_stations.php



Existing validation networks – KIT

Gobabeb (KIT); Gottsche et al, Intl. Journal of Rem. Sens., 2013



Existing validation networks – LAW



Existing validation networks – LAW

Svartberget (LAW) 



Copernicus Ground-Based Observations for Validation (GBOV) 

https://gbov.land.copernicus.eu/



Thank you!
Ask me anything at: 

jsa13@le.ac.uk
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