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Thermalremote sensing of water
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ersity of York.

Surface water temperatures
are the most accurately
measured temperatures
from space.

Open ocean sea ST <0.3 K
Inland waters, coastal <0.6 K
Relative uncertainties smaller

Why?



Water-air interface

Emissivity dominated by Roughening of surface by wind changes the
intrinsic properties of water effective emissivity



Water surface emissivity
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What is observed?
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Skin vs. depth surface water temperature

* The skin SWT measured by IR is key to some of the physical interactions of the
water body and atmosphere

* energy balance
* evaporation rates
* Impact on atmospheric boundary layer

* The temperatures at depth are more relevant to ecosystem and water quality
Impacts
» temperature sensitive species
* mixing regime of lakes, oxygenation



Lake Malawi
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[Lake in-situ observations are rare
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LSWT as a modelling constraint

- T FLakemodel (others are available)
= S - T

Drive from numerical weather prediction
fields.

T, = mixed layer temperature

|
|
I
h |- :— - - = : T, = bottom temperature AT .
| : h = mixed layer depth e opacity
. A A » wind scaling (fetch),
: | - effective depth
[ | - ice-albedo for seasonally ice covered
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Figure 14. Observed LSWT versus tuned model LSWT for
saline and high altitude lakes (a) Lake Chiquita, Argentina (31° S
63° W, salinity 145gL_1); (b) Lake Van, Turkey (39°N 43°E,
1638 ma.s.1., salinity 22 g L—1).

Geosci. Model Dev., 9, 2167-2189, 2016
www.geosci-model-dev.net/9/2167/2016/
doi:10.5194/gmd-9-2167-2016

© Author(s) 2016. CC Attribution 3.0 License.
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e Concept: if LSWT annual cycle and inter-annual

variability are well simulated, model outputs
are also informative about variability through
the lake depth

11


http://www.geosci-model-dev.net/9/2167/2016/

Case-study 1 : Worldwide changes 1n lakes

In Interaction with climate

- Examples of insights gained :ﬁrfﬂﬂegtgmame
from using TIR LSWT e
timeseries to constrain 1-d El =5
physical lake models 0 Q

Lake area and

Lake mixing
i water level

regimes

Lake ecological responses
to physical drivers

doi.org/10.1038/ s43017-020-0067-5



doi.org/10.1038/ s43017-020-0067-5
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Key lake characteristic 1s mixing regime

Evap.

Atmospheric surface layer rate
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Lake Malawi : rarely and
irregularly mixed

Many temperate lakes

aredimictic (mix during
two seasons)
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Mixing regimes change
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Mixing regimes change
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Lake 'dead zones' could kill fish
and poison drinking water

Credit; CCO Public Domain

'Dead zones' could become increasingly common in lakes in
future due to climate change, reducing fish numbers and
releasing toxic substances into drinking water.
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Case-study 2 : Industrial thermal plumes

* Mapping of industrial / power-station discharges can save money while ensuring
environmental compliance (Faulkner et al., https://doi.org/10.3390/rs11182132)
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https://www.geograph.org.uk/photo/2391185
© David Dixon C(Licence

https://www.geograph.org.uk/photo/533184
© Steve FarehamCCLicence
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Case study 3 — Sudd Wetland Floods

University of )
@ Readlng Home  Allposts ¥ Events ¥ Awards & Prizes

South Sudan floods: the first example of a mass population
permanently displaced by climate change?

Posted on
- . = B ’ 19 September 2024

Enormous floods have once again engulfed much of South Sudan, as record water-
levels in Lake Victoria flow downstream through the Nile. More than 700,000 people
have been affected. Hundreds of thousands of people there were already forced from
their homes by huge floods a few years ago and were yet to return before this new
threat emerged.

Now, there are concerns that these displaced communities may never be able to return
to their lands. While weather extremes regularly displace whole communities in other
parts of the world, this could be the first permanent mass displacement due to climate
change.
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Normal water detection doesn’t work
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World food programme approach - DTR

X e cnas

<l

1Cto 2C
2Cto 3C
3Cto 4C

| 4Cto 5C
5C to 6C
6C to 8C
8C to 10C
[l 10cte12C
[ | 12Cto14C
14C to 16C
16C to 18C
[ ] 18cto20C
20C to 24C
[ | 24acto28cC
[ ] 28Cto32cC
| 32C to 36C
I 36C to 40C
40C to 44C
B 44C to 48C

SOUTH SUDAN

Land Surface Temp. (amplitude)
in the 10 days ending 10 Apr 2024

Over a 10 day period,
the flooded extent is
assessed from the
diurnal temperature
range:ie, the contrast
of daytime and
nighttime LST (from
MODIS)
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South Sudan

Flood/Wetland Frequency ‘TimeScan’
in the 1 month ending 10 Jan 2019

vam

food security analysis

Derived from MODIS Aqua LST-DTD
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Case stu

dy 4 —-Remote sensing as

exploration

Finland

Ireland
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LSWT (K)
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Thermal Remote Sensing of the Cryosphere

Outline:

 Significance of ice and snow
analysis

 How is the Cryosphere
changing?

* Thermal signatures of ice
and snow

* Petermann Glacier Ice Shelf
case study
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Significance of Ice and Snow Analysis

= | andscapes on Earth covered in
ice and snow are collectively
known as the cryosphere

- a word derived from the
Greek krios meaning 'cold’ .

= The polar regions, encompassing
the Arctic and Antarctic, mark the
extremities of the cryosphere

= The constituents include:

O SNOW cover, sea ice,
freshwater ice, large land ice
masses (such as glaciers, ice
sheets and ice shelves), and
permafrost (permanent sub— -
surface ice). b (wemes SCECMWF G
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How 1s the cryosphere changing?

Albedo Effect Human Influence
Ice and snow's high reflectivity (albedo) reflects solar Greenhouse gas emissions accelerate ice melt, disrupting
radiation, cooling polar regions and regulating Earth's natural cycles and enhancing climate change through positive
temperature. feedback.
o Help maintain global Temperature Regulation o Greenland Ice Sheet (GrlS) and Ross Ice Shelf are
o Reduced Ice Cover experiencing intensified melting.
o Ice Storage & Sea Level o Darkening surfaces and rising temperatures accelerate
ice loss.
Ice sheet mass
Glacier mass Water (Greenland & Antarctica)
Snow cover o Carbon dioxide
0 4 _;"L_'\-:.'
// Marine
¥y vy yTYYvy heatwaves Sea level YTYYwY

lce shelf

@ e s.m-r Ll O? &0 ‘;\  a lce sheet
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Emissivity

Thermal Signatures

The thermal emissivity of snow and ice is fundamental to the energy balance and interaction of the polar and
cryosphere regions with the atmosphere

lce & Snow Emissivity Data Comparison

— Solid Ice * Emissivity and Climate Impact:
| — Liquid Sea Water . L. .
"1 __ coarse Granular Snow o Snow and ice emissivity, influenced by
—— Fine Granular Snow factors like grain size and surface

Medium Granular Snow

roughness, affects thermal radiation,
energy exchange, and surface
temperatures, playing a key role in
climate modeling and polar climate
dynamics.

* Albedo and Infrared Interaction:

o While snow and ice reflect solar
radiation due to high albedo, they also
emit thermal radiation, with variations
in emissivity based on snow
compaction and ice characteristics.

T
8 9 10 11 12 13 14
Wavelength (micrometers)

These reveal can important information about glaciological processes, ice surface physics, and their
interactions with weather, climate, and oceanic circulations. 3



Thermal Signatures: Surface Temperature

The theory of land surface temperatures (LST) states that all objects emit thermal radiation based on their
temperature, with surface features like ice, snow, and melt ponds radiating heat in specific infrared
wavelengths, which can be measured to determine their temperature.

IST(°C)

|}
. |

* Ice Surface Radiation and Satellite
Monitoring:

o lce surfaces emit thermal radiation
in the mid-wave and thermal
infrared ranges, and satellites
consistently measure ice surface

temperatures, though cloud cover —3
may affect accuracy.
« Climate Impact and Thermal ~%
Mapping: s
o Melting ice exposes low-albedo “
surfaces, amplifying warming, 10
particularly in the Arctic, while
thermal sensors provide critical data -30
for monitoring temperature
variations and ice loss trends. =50

IST retrieval from the polar orbiting MODIS satellite. It serves as a key indicator of the37

energy balance occurring at the surface of the ice.



Thermal Signatures: Snow Cover

Satellite imaging has advanced in accurately measuring snow accumulation, depth, water equivalent, and albedo,
producing highly precise snow cover maps that outperform traditional methods like ground surveys or aerial photography.

« Snow Cover and Thermal Properties:

o Snow types (wet, dry, ice) vary in thermal
properties due to composition and
density, with thermal remote sensing
capturing these differences to analyze
radiation and snow characteristics.

« Applications and Climate Relevance:

o Snow cover data supports climate
studies, hydrology, hazard monitoring,
and resource management, while thermal
data complements snow cover maps by
linking snow cover to surface
temperatures and seasonal changes.

<— -

5 15 25 35 45 55 65 75 85 95
[%]

Climatology of snow cover extent in October—November (a)&hd March
April (b) from the NCEP/CFSR reanalysis over the period 1979-20052


https://thermal-rs.earsel.org/?page_id=713#wpm-citation-source-23

Thermal Signatures: Ice Melt Detection

*Thermal Remote Sensing Tracks temperature changes in ice and snow, providing critical
data on melt extent, ice mass loss, and dynamics in polar regions.

*Melt Impacts and Sea Level RiseSurface snowmelt reduces reflectivity, while basalmelting
causes significant ice shelfmass loss, accelerating sea levelrise and requiring detailed

monitoring.

*Melt Ponds and Sea Ice DeclineMelt ponds reduce albedo, amplifying Arctic warming, while
thermaldata tracks declining sea ice extent, aiding climate change analysis.

September
2020

Russia

' Greenland ta Greenland

median ice edge 1981-2010 median ice edge 1981-2010

Monthly average sea ice extent map for (left) March 2020 and (right) September
2020
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I Case Study:
Petermann Glacier Ice Shelf, Greenland
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Impacts on the PGIS

*An ice shelf is a large floating platform (tongue) of ice that forms where a
tidewater glacier or ice sheet flows past the grounding line onto the
ocean surface.

Legend

Greenland Ice Sheet
I Petermann Glacier

I Petermann Glacier Ice Shelf

= Grounding Line Source: Esri, Maxar, GeoEye, Earths tar Geographics, CNES/Airbus DS, USDA, USG
JA AeroGRID, IGN, and the GIS User Community




Major Calving Events

In 2010 the ice shelf reduced by 16,580 m and the ice speed increased by 282 m y-1
In 2012 the shelf reduced a further 8,430 m and the ice speed increased by 267 m y-1
1988 the ice speed was 148.8 m y-1
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Land Surface Temperature (K)
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Climate Drivers

» Arctic Amplification
o Heating up 3x faster than the rest of the world
* Rising Temperatures

* Natural Drivers
= Greenland Blocking Index

= North Atlantic Oscillation
= Arctic Oscillation

o Air, ocean and surface temperatures all increased between 2010-2012

o Natural atmospheric circulation patterns was found to influence rising air and surface temperatures

Aqua Modis Greenland

— day

night
—— 0.25 k day A/decade
—— 0.19 k night A/decade

—— daytime uncertainty
—— nighttime uncertainty

2003 2005 2007 2009 2011 2013 2015 2017 2019 2021

Sea Suface Temperature Dataset: 80: 81.5N to - 58: 61.5W, 1981 10 2021
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» Sensitivity
o Ice shelves are highly sensitive to
temperature changes
o They are affected by both air and
ocean
* Induced Ice Flow Speed-up
o Floating terminus acts as a plug to
the 'parent' glacier (buttressing)
= Calving = less resistance =
increased ice speed and
discharge and more mass loss
* Rising Sea Levels
o Increased glacier meltwater
discharge is adding freshwater into
the ocean
= This is causing rapid SLR
= Also results in desalination —
which affects global circulation
and heat transport

iceberg ] |

<Gy it
<z & «w Mme t |
( (Q\\) | Yo &6‘?’\
R ness G /!
calving ¥>/’ o ’b‘(\

surface mass
balance forcing
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Wrap up and questions
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