THERMAL REMOTE SENSING SOME FUNDAMENTALS

PROF. JOHN REMEDIOS DIRECTOR OF NCEO

The objectives of this lecture are:

- To describe the basic principles of thermal remote sensing
- To give some insights into the physics of what is a familiar problem.
- To recall some of the key aspects that guide LST determination
- > To consider the challenges for the next years

Radiation reaching space

NATURAL ENVIRONMENT RESEARCH COUNCIL

Environment Research Council

SENSIBLE HEAT FLUX: Heat transfer from the surface to the atmosphere through condensation, convection and turbulent mixing.

TOA radiance dependencies

The TOA signal (radiance) that we see depends on many factors Visible/shortwave:

- Albedo (λ) of surface
- Aerosols
- Clouds
- Atmospheric gases

Infrared:

- Emissivity (λ) of surface
- Temperature of surface
- Atmosphere temperature and gases
- Clouds
- Aerosols

nedios | jjr8@le.ac.uk

c.uk | NCEO U. Leicester

THE ATSR INSTRUMENTS

SOURCE = EARTH (I/R); SUN (VIS.)

COLLECTOR = SCAN

DISCRIMINATION = SPECIFIC RADIOMETER CHANNELS

DETECTOR = COLD HgCdTe for MID-IR; Si for VIS

National Centre for Earth Observation

CAL=2 BLACKBODIES + VISCAL

THE ATSR INSTRUMENTS ARE DUAL VIEW RADIOMETERS

:ural /ironment :earch Council

Envisat swath comparisons: AATSR vs MERIS

Natural Environment Research Council

ATSR Infrared channel windows

Physics of passive thermal remote sensing 🐺

In clear-sky, we need to describe the:

Source of radiation

Initial radiation

- > Wavelength
- > Temperature
- Emissivity (and reflectivity of the surface)
- The attenuation of the atmosphere (chief gases, particularly water vapour):
 - Transmission (absorption)
 - Emission
 - Scattering (not in clear sky)
 - [Atmospheric correction]

Absorption removes radiation

Adds radiation (T body)

Scattering removes/adds (direction)

Black body and Planck fn.

The sources of signal in the thermal are the Earth (and the Sun)

Their emission is fundamentally determined by temperature T and essentially can be considered as blackbody radiation.

A black body is a body or gas volume that

- has constant temperature
- absorbs all incoming radiation completely
- has the maximum possible emission in all directions (isotropic) and at all wavelengths

Planck fn: Standard Wavelength (λ) form

 $B(\lambda,T) \quad d \ \lambda = \underbrace{2hc^2}_{\lambda^5 \{exp(hc \ / \ k \ \lambda T) \ -1\}} d \ \lambda$ Units of B are W m⁻² sr⁻¹ m⁻¹= W m⁻³ sr⁻¹

Planck fn and Stefan's Law

B(λ ,T), is characterised by:

- i. A unique dependence on wavelength, λ , for a given temperature T.
- ii. A dependence on T only (at a given λ). For all wavelengths, B(λ ,T) increases at all wavelengths with increasing T
- iii. A well-defined maximum for a given T.
- iv. The relationship λ_{max} T=constant (Wien's law)

Note:

T(sun) ≈6000 K

(peaks at approx. 0.6 mm or 600 nm = visible)

T (Earth mean)≈ 255-245 K

(peaks at approx. 10 mm = infra-red)

[T(Earth surface mean) ≈288 K]

wavelength in microns

Adapted from Adkins "Thermal Physics" Dotted line shows Wien's Law i.e. the line joining the points of maximum emitted intensity.

Stefan's Law (integration of Planck's Law in absence of spectral absorption/scattering)

 $W = \varepsilon \sigma T^4$

 ε is the emissivity of a real body (i.e. a gray body). $0 < \varepsilon < 1$ for a gray body σ (Stefan's Constant) = 5.67 X 10⁻⁸ W m⁻² K⁻⁴

ios | jjr8@le.ac.uk | NCEO U. Leicester

How we describe LST signals at satellite

Mean radiative temperature over pixel area

- \succ L^{sat} is the radiance measured by the satellite sensor
- L^{ground} is the upwelling radiance emitted by the ground toward satellite and absorbed by the atmosphere in-between.
- \succ L^{atm} is the upwelling radiance emitted by the atmosphere towards the satellite
- L^{atm_reflected} is the down-welling radiance emitted by the atmosphere and reflected by the ground

$$L^{sat} = L^{ground} + L^{atm} + L^{atm} - reflected$$

For each channel (i):

$$L_{\lambda}^{\text{TOA}}(i) = \tau_{a\lambda} \varepsilon_{s\lambda} B_{\lambda}(T_s) + L_{\lambda}^{atm} + \tau_{a\lambda} \big(1 - \varepsilon_{s\lambda} \big) L^{-sky}$$

John Remedios | jjr8@le.ac.uk

NCEO U. Leicester

The thermal infra-red

- The thermal infra-red is also complicated.
- Clouds obscure the scene
- Some aerosols affect the signal but not in such a ubiquitous fashion.
- The real complication for clear sky signals is:
 - Emission from the surface (emissivity varies with wavelength)
 - The absorption from atmospheric gases
 - The re-emission of this signal according to the transmission of the gas and atmospheric temperature.
- So need to choose a spectral window (channel) avoiding the gas parts of the spectrum, remove clouds, and correct for gases (again water vapour).

John Remedios | jjr8@le.ac.uk | NCEO U. Leicester

Prof. J. Remedios, Natural Sciences

Main gases: CO₂, H₂O, O₃, [CH₄, N₂O, CFCs,...]

13

Close up of thermal infra-red spectrum

* *

UNIVERSITY OF **LEICESTER**

• The atmosphere components are in general:

 $L^{atm} = \int B(\lambda, Tz) (d\tau(\lambda, \rho, Tz) / dz) dz$

 $L^{atm_reflected} = \mathsf{R}_{\mathsf{S}}(\lambda)\mathsf{I}_{\mathsf{Down}}(\mathsf{atm})\tau(\lambda,\infty)$

- However, in practice the reflected term is small so we need to account for it in real calculations but not to detail it here.
- Much can be understood by considering the atmosphere as a single layer with transmission:

 $\tau(\lambda) = \exp \left[- k(\nu) u l \right]$

- > Spectroscopy: $k(\lambda)$
- atmospheric composition/cross-sectional density:
 - $u = \rho$ per unit length
- photon (observation) pathlength: geometrical I

National Centre for Earth Observation

Single gas layer is conceptually **appropriate for sensing of the surface in window regions** where the atmosphere influence is small.

 $L^{TOA}(\lambda) \approx \tau(\lambda) L_o(\lambda) + (1 - \tau(\lambda)) \times B(\lambda, Ta)$, neglecting reflected atmosphere component. When the layer is transparent, the second term vanishes. When the layer is opaque, the first term vanishes.

Interpreting observed I/R EMISSION SPECTRA

Natural Environment

Research Council

Surface Emissivity

- Emissivity is the relative ability of the surface to emit radiation
- It is quantified as the ratio of energy radiated by the surface with respect to the energy radiated by a black body
 (ε = 1) at the same temperature
- Surface emissivities can be highly variable owing to the heterogeneity of the land. Factors influencing emissivity include:
 - Surface type
 - Fractional vegetation cover
 - Soil moisture
- > Can range from less than 0.94 for some sandy soils to over 0.99 for some regions of inland water or snow and ice
- Variability of surface emissivities is amplified in regions of high topographic variance and for larger viewing angles.
- ➢ Need to accurately deal with uncertainties otherwise biases can occur in LST retrieval of several degrees (Schaadlich *et al., RSE, 2001).*

National Centre for Earth Observation

Surface emissivity in a GEO view

Natural

Environment

Research Council

Image from ASTER spectral library V2

Plots from ASTER Spectral Database Vegetation close to blackbody throughout infra-red.

Feature at 5 μ m and in the near infra-red

Surface emissivity of stones/soils

Natural Environment

Research Council

Global LST: ATSRs

ASTER - Phoenix

Natural Environment Research Council

NATURAL ENVIRONMENT RESEARCH COUNCIL

ASTER LST - Phoenix

Natural Environment Research Council

NATURAL ENVIRONMENT RESEARCH COUNCIL

IRRIGATION: PHOENIX LST and EMISSIVITY FROM ASTER

Visible Imagery (Landsat)

National Centre for Earth Observation Natural

Environment

Research Council

Emissivity angular variations

There is also an

the daytime

Fig. 4. Multi-sensor retrievals of angular dependence of LEO emissivity (ELEO) as function of LEO VZA (degrees) at the selected sites (represented by the colors). From left to right: emissivities for channels centered at 8.7 µm, 10.8 µm and 12.0 µm, respectively. The error bars indicate the 95% confidence intervals of the regressions. The y-axes have different ranges, but the grid lines correspond to the same intervals in all plots.

Ermida, et al.

Remote Sensing of Environment, 2024, https://doi.org/10.1016/j.rse.2024.114280

Infrared and microwave skin depths (ocean)

Natural

Environment

Research Council

K

http://www.ghrsst.org/SST-Definitions.html

Infrared vs microwave instruments

ADVANTAGES OF INFRA-RED INSTRUMENTS:

- Measure near the peak of the Planck fn. ($\approx 10 \mu m$) so much greater T sensitivity!
- Larger, more uniform emissivity of sea water (but see below).
- Very small field-of-view (FOV) of instrument (typically 1 km diameter pixel for SST measurements).
- Microwave instruments: FOV \approx 10 100 km "pixel" diameter, also side-lobes introduce far-away signals.
- Better end-to-end calibration of instrument.

ADVANTAGES OF MICROWAVE INSTRUMENTS

Very low noise instruments

Can see through many clouds unlike the infra-red.

Simpler atmospheric correction problem.

The infra-red measurements in atmospheric windows give the best sensitivity to Surface T

29

National Centre for Earth Observation

John Remedios | jjr8@le.ac.uk | NCEO U. Leicester

Urban imaging at high spatial resolution

- Leicester providing some newly improved data on urban temperatures.
- Data on cities being tested with government and industry users via an Ordnance Survey platform offering

Natural Environment Research Council

Closing points

- Determination of LST has advanced considerably in recent decades
- In the thermal, the higher resolution instruments are channel-based, typically up to 5 bands.
- Emissivity remains a challenge to overcome for the highest accuracies and for inter-operability of data sets.
- Nonetheless, careful consideration of LST algorithms at least allows uncertainties to be calculated and "climate-quality" to be achieved.
- Anisotropy of LST itself, particularly in the daytime, also presents caveats
- There are very good prospects for improved data in urban and agricultural environments.
- International co-operation has proved very important in advancing the field
- With advent of multiple high spatial resolution sensors and high accuracy GEO thermal imagers, the prospects and demands for LST-related sensors are high.

