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Thermal Infrared Measurements

2hc?
= Observations in the thermal infrared wavelength 34.T) o (exp( e ) 1)

range (3-20microns) are useful for Ak, T) ~
measurements of:

h = Plank's constant
c = the velocity of light in vacuum
K= Boltzmann's constant
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Applications for Thermal Imagers
T e e

Detection of Earthquakes and Pre- UHI: Surface temperature maps, Vegetation
eruptive volcanoes maps, Land cover/Land Use, Building
Volcanoes  Hot spots and active lava flows Information, Air Quality
and Post eruptive studies on lava flows Security and surveillance
Earthquakes Industrial/power plant monitorin
E Eruption clouds and Tropospheric /P - -

Air pollution

plumes Differentiate between urban and industrial zone
Detection of fires, potential coal fires, Detection of Qil spill and Plume
coal mine fires . Mapping malaria and/or cholera potential
. Urbanisation )
Fires regions

Estimation of burnt area, fire intensity

, Arthropod vector ecology and disease
and severity

distribution

Detection of water stress in crops and : .
P Mapping meningitis outbreak

forests
Detection of evapotranspiration in crops, Asbestos-cement detection (non-accessible
river basins, and continents areas)
Prediction and monitoring of floods Detection of minefields

Hydrology Mapping irrigated land Trafficability (off-road soil moisture content)
Cooling Degree Day estimations Soil composition

Identifying geothermal resources

Growing Degree Day estimations and Surface Mapping geothermal anomalies

mapping Variability

Mapping dynamic variability of surface
Scienct S
Techno temperature and emissivity
Facilities Council
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Sentinel-3A SLSTR Sea Surface Temperature — August 2016
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“Measuring the small changes associated with long-term global climate change from space is a daunting
task. For example, the satellite instruments must be capable of observing atmospheric and surface

temperature trends as small as 0.1C decade~', ozone changes as little as 1% decade", and variations in
the sun’s output as tiny as 0.1% decade".”

Scien Ohring, G.B., B. A. Wielicki, R. Spencer, B. Emery, and R. Datla, 2005: Satellite instrument calibration for
K Techi measuring global climate change: Report on a workshop. Bull. Amer. Meteor. Soc., 86, 1303—-1313
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Why measure sea surface temperature?

Sea Surface Temperature is the interface between the earth’s ocean and atmosphere. It is an important indicator of the Earth’s climate
system and is used for weather predictions, atmospheric models, study of marine ecosystems.

Global Land and Ocean Average Temperature Anomalies
January-June

— Binomial Filter
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Science and Chart from NOAA National Centers for Environmental Information, State of the Climate: Global Analysis, published
Technology online May 2023, from https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-
Facilities Council o ries/globe/land_ocean/ytd/6/1880-2024
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Example Satellite IR Instruments
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Field Instruments

3l

SFLIR

JPL Self Nulling Radiometer

SiSTeR (RAL Space)

K Science and
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Basic Radiometer

Radiometer L
Enclosure Radiometer

Exit |
Aperture Scene

Detector +
Filter

Power at detector

Pdet = A Tiitter(Q2 Lscene + (T1- Q)LRradiometer)
AQ = Optical etendue of system (this is conserved)
A = area of detector
() = solid angle subtended from detector to main
aperture

Triter = transmission of filter
RAL Space

The basic components of a radiometer are:

« Detector + Amplifier

 Filters to select the required wavelength of
interest

« Optics to collect the signal and focus onto
detector

 Light tight enclosure to and stray light control
to minimise background signal

« Calibration sources



Detector Types for IR instruments
» Semiconductor Photo-Voltaic (PV)

= Photons falling on PV devices excite electrons from valence to conduction band,
Cr_eat_lnP a photo-current. MWIR instruments (3-6um) use detectors based on this
principle.

= Semiconductor Photo-Conductive (PC)

= Photons falling on PC devices excite electrons from valence to conduction band,
causing a change in the resistance.

» Pyro-Electric Detectors

= Thermal radiation heats detector and generates a voltalge - used in passive IR
Instruments such as Heitronics KT-15 radiometers, FTIR spectrometers.

= Micro-Bolometers

* Incident radiation heats detector and changes resistance. Most common type of
detector used in commercial TIR cameras.
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IR Detectors

» Performance of detector is usually defined by D*
(Wem-THz ")

D, * (cmeHz"2/W)
v
= For TIR wavelengths L — —
= MCT PhotoConductive D* ~ 5x1010 AN e Ge (196 K) Ideal limit of photovoltaic detectors
i * 9 1013 - InGaAs (300 K) 300 K (half space)
= microBolometers D*~10 T
= Pyro-Electric Detectors D* ~ 3x108 Ex.InGaAs| . *.* Ex.InGaAs (253 K) Ideal limit of
1012 Tt InAs (77 K) ; photoconductive detectors

300 K (half space)

(306 K) | <0 Ex. InGas (300 K)
* For MWIR o - | BRS ~.~,..;....;.---lnAs(196K)

= MCT PhotoVoltaic D* ~ 7x101° Ny A e e
' _HgCdTe (77K) _-Si:Ga (4.2K)

= |[nSb Photovoltaic D* ~ 10" 1010 _-HgCdTe (77K)

Pbs HgCdTe (77 K)

(D* quoted for available devices) Phse.” : =
10° R _Golay cell (77 K)

Pyroelectric detector (300 K)_ ~Thermocouple,

bse G00k) ) Pbse(77K) ._thermopile (360 K)

108 Thermistor * borometer (300 K)--.. \

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

. Wavelength (pm)
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Impact of Detectivity

" NEP = \JAgeef/D* W
* f is the sampling frequency

" SNRjo. = Pyt /NEP

(excl. other noise sources)

" P40 depends on source radiance,
optical etendue, optics transmission,
spectral response.

« NEAT = NEPL K
0P
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Improving the design?

Problem with the ‘simple’ design is that the enclosure
also emits radiation at a similar temperature as the
scene.

Radiometer
Enclosure

Changes in thermal background (even < 1K) have
significant impact on calibration.

Detector +
Filter

Also, optical beam is defined by geometric apertures.
Ok for scenes close to the instrument but limits
where instrument can be deployed and cannot be
used for imaging.

Need to think about the size of source.
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Technology
Facilities Council

RAL Space




Improving the design

I—Radiometer Radiometer
Detector Enclosure
A

Enclosure /

| - |
Aperture Scene

Detector +
Filter A\
Focussing Chopper
Optics

We can improve by put the detector in a cooled
enclosure so that background signal is minimised

* Poet = A Qfiter(Topt Lscene * (1- Topt)LRaciometer) (though not useful for uncooled detectors).

Topt = transmission of optics
Also introduce a focussing optics to constrain the

field of view
Science and Use a chopper to modulate between scene and
Technol . .
Facilities Council instrument to account for thermal drift and 1/f

RAL Space noise.



What do we mean by Calibration?

Calibration is the operation that [...] establishes a relation

between the quantity values with measurement uncertainties
provided by measurement standards [...] with corresponding [...] Mean Error
measurement uncertainties and [...] uses this information to —
establish a relation for obtaining a measurement result from an |
indication. Bureau International des Poids et Mesures |

Traceability is the property of the result of a measurement or the ' T | '
value of a standard whereby it can be related to stated |<—| Noise —"
references, usually national or international standards, through |
an unbroken chain of comparisons all having stated uncertainties Combined Uncertainty
I
I
. . . . ‘True’ Value
Error is defined as the difference between a result obtained and (Which also has an uncertainty)

the ‘true’ value.

Uncertainty parameter associated with the result of a
measurement, that characterises the dispersion of the value that
could reasonably be attributed to the measurand.
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Calibration Model

Lscene—®| Optics ——» Detector —»{ Pre-Amp —» Adi —» Gain —» Integrate — Vscene —| ADC —3DNgene

Typically, detector counts will be some function of the scene radiance

Cscene = FADC (V {AQ ((Topthcene + (1 T Topt)Linst)} + Voff)

-

Lhigh

which reduces to
Cscene = 8ain(Lgcene) + Coffset L

Both gain and offset must be stable during calibration interval

We invert this to get scene radiance as a function of detector counts —
DNiow DN high

— =1
Lscene — galn (Cscene _ Coffset)

~ ag + a;Cg (@ssuming linear function) Calibration coefficients are

o g . :
Eg Sclenceand derived via reference to known
Facilities Council calibration sources

RAL Space



Calibration

I—Radiometer Radiometer
Detector Enclosure

A
Enclosure /

| Exit
Aperture _ I—Cal
Detector +
Filter v
Focussing Chopper
Optics

We can determine the calibration gain and offset
by pointing the instrument at an external
reference source.
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Improving the design further

LRadiometer Radiometer
Detector Enclosure
A
Enclosure /

Exit
Aperture
Detector +
Filter A
Focussing Chopper
Optics

Here we introduce a scanning mechanism that allows the
instrument to view different scenes and external calibration
sources.

Note that the calibration sources are mounted ahead of the
full optical chain, so the instrument’s self-emission is

calibrated out.

This is the basis of a self-calibrating radiometer

Science and
Technology
Facilities Council
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Optical Chain (from (A)ATSR)

(” B QA)LFPA,A *
(1 “TFPAA )LFPA/l +
(1 — S, )Lsurr,/l +
(1 ~ I'para, )Lpara,ﬂ +

é:/i (1 - rscan,/i )Lscan,i +
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At TIR wavelengths ALL surfaces
emit as well as absorb/reflect

Ellipsoid
Mir

Detector +
Filter
3.7um
Detector +
Filter

80K
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Self-calibration

= Recall the instrument calibration model

Lscene = ap + alcscene

= \WWe want to determine the scene radiance L .. from a measurement count Cy.qpne, but don’t know
the coefficients a, or a,. What to do?

= Point the instrument at a known source of light:

Leain = a9 +a1Ccann

= |f we know L¢..ne We could derive the coefficients a, and a,, but we don’t, so we need a
measurement at a second source radiance, L., . We can then derive the coefficients using
simultaneous equations so that:

a9 = (CearLcarz — CearzLicain)/(Cear — Cearz) and a; = (Lcair — Learz)/(Cearr — Cealz)

= Or we can rewrite the calibration model as:

Lscene = XL¢gp1 + (1- X)Lcalz

where X = (Cscene _ Ccalz)/(ccall _ Ccalz) — (Lscene _ Lcalz)/(Lcall _ Lcalz)

M
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Calibration of IR instruments

For Thermal IR instruments such the traceability of the measurements to Sl units is
achieved via internal BB sources.

For temperature this is defined by the Boltzmann constant realised through the International
Temperature Scale of 1990

2hc?
5 he )_
A (exp(Aka) 1)

For an ideal blackbody where e = 1.0 B(A,T) =

<— kg =1.38064852 x 1023 JK-

i L}
{ \
1
4
.>\
[P .
4 S e
n?(_i, -
LB
| B%
L
-
P N
: !
-
b i

Instrument Blackbody Source S-PRT (ITS-90) Fixed Point Cells Sl
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Ground BlackBody Sources
_ .
oo 5 B

HGH Double BB source

CASOTS-II BB Source S ystens

_________

|Isotech Hyperion BB
source

i
|
!|I|II|||II|I|I|||||||II

Fluke Custom BB
source

M
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Example flight BB Sources

AATSR SLSTR

N

ABSL/MSSL RAL Space/ABSL ABSL Itd.

MODIS/VIIRS

EarthCARE BBR FCIl - Metea 3d Gen

N AS A-G S FC Proceedings Volume 10563, International Conference on Space Optics —

RAL Space ICSO 2014; 1056323 (2017) https://doi.org/10.1117/12.2304144
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https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10563.toc
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10563.toc
https://doi.org/10.1117/12.2304144

Blackbody Design Considerations

* Emissivity, &
* Most practical blackbody sources are not completely black, so have an
emissivity < 1.
= Sensitivity to reflected radiance from instrument & surroundings, smallest
when surroundings at the same temperature as cavity.

= Temperature knowledge, T
* Thermometry readout electronics
nermometry sensors
nermometry calibration and traceability (ITS-90, end to end)
nermal gradients

m Kn(_)wledgfe of both has a first-order effect on knowledge of the
radiance leaving the black body

Science and
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Emissivity

The emissivity ¢ of a surface is its effectiveness in emitting energy as thermal radiation and has a
value between 0 (non-emitting) and 1 (perfectly emitting)

The emissivity of a surface is exactly equal to its absorptance, or ability to absorb thermal radiation
The sum of the emissivity ¢, reflectance p and transmittance 7 of a surface is one:

e+pt+t=1
For practical black bodies, T = 0 and we're left with:

e+p=1

This equation tells us that not only does the emissivity scale the amount of Planck radiance leaving
our black body, but any deficit is made up with radiation reflected from elsewhere in the instrument:

Lgg(T,A) = eB(T,A) + (1 — &)Ly, aSSumingp =1-—¢

The reflected radiation term L, .. is often poorly known or controlled, so it's important to use a
black body target whose emissivity is as high as possible

Science and
Technology
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More emissivity

= The overall emissivity of a practical black body comes from two sources:

= Surface coating
= |nternal geometry

= A number of coatings are available for the thermal infrared part of the
spectrum, including:
= Nextel velvet black (paint)
» Chemglaze/Aeroglaze (paint)
= Martin black (chemical etch + dye)
= Vantablack (carbon nanotubes)

= Emissivity varies with wavelength but typically € = 0.95 to > 0.99
» Diffuse and specular coatings available (those listed are diffuse)

* Professional finishing recommended!

Science and
Technology
Facilities Council
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Black Coating Materials
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REFLECTANCE DATA OF BLACK COATINGS

Acktar Fractal black

Acktar UltraBlack
Equinox Interscience Deep Sky Enhanced Black ««««««-« Vantablack CVD sample 4

Vantablack CVD sample 5 Makiewicz Nextal Velvet 811 21
— = -Vantablack S-VIS

B S S

5 10 15 20 25
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Most black coatings used have some reflectance in TIR range

Facili

[g scien EVEN carbon nanotubes have reflectance ~1% at 12um (Emissivity ~0.99)
Techr

RAL Space Hence need for structured baseplate or cavity to increase emissivity >0.999



Geometry

6%

Geometry alters the effective emissivity of a surface:

20%

100%

The longer the side walls:
the smaller the fraction of external radiances reflected into the instrument calibration view
the lower the radiative loading on the viewed surface

Science and
Technology
Facilities Council
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Yet more emissivity

- -

We can enhance the emissivity by adding structure to the cavity that has the effect of increasing
the number of reflections within the cavity before any reflected signal reaches the instrument.

Science and
Technology
Facilities Council
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Temperature

The current best practical temperature scale is the International Temperature Scale of
1990 (ITS-90)

Defined temperatures correspond to phase transitions in various pure elements and
compounds

ALL readily available thermometers are calibrated against ITS-90
You get what you pay for with thermometers: If you need 10 mK accurac;t/

and excellent stability over time, you should budget a reasonable amoun
thermometer(s), readout electronics and a traceable calibration

f(you might do)
or the

For the 0 'C — 100 "C range, platinum resistance thermometers (PRTs), rhodium-iron
thermometers (RIRTs) and thermistors are all possibilities

A good thermometer alone won't solve all your problems. It must also accurately
represent the temperature of the emitting surface in the black body, so:

. 'tl)'he pailrlmt or surface coating should be as thin as possible and the radiative heat load on it should
e sma

» The principal thermometer must be embedded in the viewed surface
= The thermometer wires need to be in good thermal contact with the black body walls
= Keep temperature gradients in the directly viewed surface under control

Science and
Technology
Facilities Council
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Spectral Response

Measuring the spectral response R(A) of your sensor is critical if
you really need accurate measurements because:

Ly (T) = f B(Tsconer 1) RAA)dA / f R(D)dA

... for an ideal BB source.

For ‘real’ scenes the measured radiance will be affected by
atmospheric absorption and emission lines, spectral variations in
emissivity.

RAL Space



Spectral Response

The Earth is not a
perfect blackbody!!!!

Although the ocean
surface has an
emissivity close to 1.0,
the atmosphere
absorbs some of the
radiation and re-emits
at a lower
temperature.

H,O Here !

Science and
Technology
Facilities Counc
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Simulated atmospheric
transmissions over the wavelength
range 9-19um for nadir view 0-
40km vertical path generated by
Fastcode, line-by-line code.

The profiles used were ‘typical’
mid latitude. Note that the spectral

radiance reported here is in units
of wavenumber.

H,O is assumed ~10kgm
Note — this is a particularly dry

atmosphere and H,O can go up to
60kgm-2



Spectral Response Calibration

Measurement technique:

» Operated the SLSTR focal plane array as the
detector in a Michelson Fourier transform
spectrometer

* Derived spectral responses from time-resolved
interferograms collected by the FPA detectors

Characterised:

« Spectral responses of all standard channels (S1
— S9) at FPA temperatures from 87K (flight
operational temperature) to 100 K

« Spectral polarisation (depth, plane and

unpolarised response) of longwave channels (S7
9) at an FPA temperature of 87K

Science and
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Spectral Response Measurements
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Other Error Sources
» Thermal drift

= Just because you pointed your instrument at a blackbody in the lab doesn’t mean
your instrument calibration is valid in the field.

» Remember, the calibration is very sensitive to changes in thermal environment.

* This is why 2 BB sources are used for satellite instruments
* Non-Linearity

* TIR detectors generally have a non-linear response (especially MCTs)
= Stray Light

= Optics design is critical to minimise internal and external strays. Use of black coatings
on optics mounts, baffles to avoid direct illumination of external heat sources.

= Size of source effects

* Need to be aware of the beam geometry. If calibration source is too small or too far
away, then the source does not fill the full optical beam - not recommended.
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Law of Propagation of Uncertainties

Xy =X, (Zln?fz)

Variance of
measurand

u,,r k=1
u(x,)
T k=2 -
%ol k=3
= /
Physical effects : —{;} — u(x;) — -—:1‘,5

Assumptions and
approximations in
measurement function

From - Mittaz, J., Merchant, C. J. and Woolliams, E. R. (2019)
Applying principles of metrology to historical Earth
observations from satellites. Metrologia, 56 (3). ISSN 0026
1394 doi: https://doi.org/10.1088/16817575/ab1705
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Correlation

coefficient
Variance of between input
iInput quantity x; quantities x; x;

N ‘

u?(y) = Z(a—) 2(xl)+22 z ox. 7x u(xl)u(x])v(xl,x)

i=1 =1 j=i+1

Sensitivity of
measurand to
effect x;

Ref. Evaluation of Measurement Data. Guide to the
Expression of Uncertainty in Measurement (JCGM
100:2008).
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Propagation of Uncertainties in EO data

Raw satellite
data (LO)

= Uncertainties from low level |
propagate to higher levels. acanees 1)

Climate data
record (L2)

»E.g. L1 BTs affect L2 SST and

beyond. s,
A
» Challenge is to trace uncertainties B Reading Flducéo
th rough fU” Process Merchant, Christopher J (2017). Propagation of

uncertainty in Earth Observation. figshare.
Journal contribution.
https://doi.org/10.6084/m9.figshare.4924175.v1
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Uncertainty Propagation SLSTR shown here

Starting point is the measurement equation

We include +0 term to account for additional effects

l

LE - XLBBl+ (1_X)LBBZ+ O

oL,

X
_ ( CE 1 (CBBZ))
((CBBl) =1 (CBBZ))

Uniformity around scan

Stray Light

X
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Uncertainty Propagation SLSTR shown here

We work outwards to determine all measurement effects

Heated BB oL oL Cold BB
Radiance Lep1 = EL(Tpp1) + (1 — E)Lpack T T | ’Lm = L(Tpp2) + (1~ E)Lpack Radiance
BB1 BB2

Uniformity around scan

LE - XLBBl+ (1_X)LBBZ+ 0

Stray Light
oL
0X
0X 3
Earth View ac, v = —{Capa)) e Cold BB
Counts ((Cpp1) — (Cpp2D 3 Conn) Counts
0X Heated BB

9(Cpp1) Counts
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Uncertainty Propagation SLSTR shown here

H eate d B B Thermometer Calib'\:at.ion Lh?rmometer Calibration C o I d B B
Thermometry

Thermometer drift u(Ty)

u(T;) Thermometer drift T h e rm O m etry
Drift of readout electronics

Drift of readout electronics

0Tgp1 0Tgp2
Spectral response measurement w(RMA) B_T Spectral response measurement j— (RO a—T
") u 13
Temperature dependence —ll— Temperature dependence
nPRT MPRT . nERT mPRT Temperature Gradients
Temperature Gradients p S t I R
Ollys)) sy = > wifi | ) wi+0 [ ) OLT552) Taaz=Zwﬂi/Zwi+o — N pectiral hesponse
OR(2) = = Temperature Stability AR(A) o = Temperature Stability

0L(Tgp, _ 0L(Tgg;)
S pe ct ral Re S po nse L(Tsp1) = Z R@)B Ty, A2 +0 (— 572 L(Tps;) = Z R(D)B (Tgpz, A)AA + 0 T
JLgpp,
L (Tys2)

H eated B B ance of black coating u(e) 0Lgp, L (Tap) + (1 — O)lpgee + 0 dLg dLg 0Lpg, u(e) _[ Reflectance of black coating C O I d B B
. = = Cavity modelling } 9 o Dk OLpp: 0L pp, ~| Lopz = eL(Tpp2) + (1 — E)Lpgere + 0
emissivity

d¢ Cavity modelling

emissivity
I

Uniformity around scan
Lgsy | Lp= XLpp + (1-X)Lm+0<|—[ OLpp2
OLlpack : ! Stray Light OLpaci
OLg
Effective temperature of instrument ]_ u(l ) ox u(l ) Effective temperature of instrument
- . " . Back. Back —‘
Temperature stability during calibration X ! Temperature stability during calibration
E [y — (Ce —Cgga) +0

(Csp1 — Cir2)

] = . N ac, _ Caere X X
N o n - LI n ea rl ty Non-Linearity Measurement aTi Cg = —(NL +D +0

9Cap1 9Cpp>
1% 1%
Non uniformity of source — Cos = — . .
. Noise (C ) aCg Is correlated ‘th BB Cps1 = NZ Cpp1i +0 Cos2 = NZ CBBZ:idLL\ Non uniformity of source
N o I se det,E 3Catr temperature gradient = =0 Is correlated with BB temperature
et gradient
Cppr = Caetins +0 Cppy = M+ 0 9Chhz (NL) Non-Linearity Measurement
v We work outwards to
. Non-Linearity Measurement u(NL) 9o |
Science and

determine all
dNL 9Cpp1 9Cpp2
Technology

OCaeeamn measurement effects
Facilities Council
Noise L (Cdet,BBl) u(Cde“,bz) Noise
RAL Space

aCdet.be




SLSTR Uncertainty Budget

Earth Scene Noise
BB1 Noise
BB2 Noise

BB1 Temperature Measurement
BB1 Temperature Gradients
BB1 Emissivity
cme=c=.=.= BBl Background Temperature
— BB2 Temperature Measurement
_____ BB2 Temperature Gradients
.......... BB2 Emissivity
I mimimimem BB2 Background Temperature
Non Linearity

ISRF Band Centre

— COmbined

SLSTR-A shown here for clarity
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Uncertainty (K)

Uncertainty (K)

Uncertainty (K)

S3A S7 Nadir Uncertainties

Scene Temperature (K)

S3A S8 Nadir Uncertainties

== -

260
Scene Temperature (K)

S3A S9 Nadir Uncertainties

IIIIIH]] [T

N
o
o

Scene Temperature (K)



Uncertainties in SLSTR L1 Products

= Random effects - detector noise 12um BT 12um NEDT 12pum uBT
expressed as NEDT (TIR (Random) (Systematic)
channels) and NEDL (VIS/SWIR PN ; . .. e |
channels) for each scan line

= Systematic effects — radiometric
calibration - tables of uncertainty
vs. temperature type-B (a-priori) Bt T o
estimates based on the pre-launch North Sea on 22 Aprll 2020
calibration and calibration model T e

= MapnoiS3 tool developed by RAL
allows mapping of uncertainty
information to L1 images

. hd

Australla on 01-dan-2020

Images from Smith D. et al, Traceability of the Sentinel-3 SLSTR

Sci d Level-1 Infrared Radiometric Processing , Remote Sens. 2021,
Technology 13(3), 374; https://doi.org/10.3390/rs13030374
Facilities Council

RAL Space



Thank you!
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Optical Chain (from ATSR)

(” - )LFPA,/z +

(1 ~TFPA,A )LFPA/l +

¢ A (1 o 5/1 )Lsurr,/l +
A — My
Q/l (1 ~ "para,A )Lpara,/I +
TEPAA (1 )L
":»5/1 r o rscan,/i scan, A +
para,/l
r scan,)thcene,/’t

At TIR wavelengths ALL surfaces
emit as well as absorb/reflect /

Detector +
Filter
3.7um
Detector +
Filter

80K

Mirror

and

RF Baffle
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Paraboloid Stop

Off-Axis
Paraboloid
\ .
Mirror
Field Stop
Nadir Baffle
I I [ T 1
/

/
Scan
Mirror <4-From Scene— T?




