[Thermal] Earth Observation of Landscape Fires

Presented by M. Wooster

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

EO Science for a changing planet www.nceo.ac.uk @NCEOscience

Natural Environment Research Council

Global Burned Area [MODIS]

LANDSCAPE FIRES ALSO SPOTTED BY THERMAL EO

Roy et al. (2010)

Fire Radiative Power to Fuel Consumption

Fire Radiative Energy & Fuel Consumption

Theoretically ~ constant FRP now part of the Global Climate Observing System Essential Climate Variables

Fires Give Differential Spectral Radiance Increase with Temperature at 4µm and 11µm

Wavelength (μ m)

Radiative Transfer of Active Fire Detection

Challenge 1 – Fire Detectability (Scales with Pixel Area)

Across Scan Distance (km)

NTC SLSTR L2 FRP Product (SLSTR vs. Terra MODIS)

Small Pixel Benefits - Agricultural Residue Burning (China)

Active Fire Detections

MODIS (blue) and VIIRS-I band (red)

What Pixel Size Might Be Required?

Sperling, Wooster and Malamud https://doi.org/10.3390/fire3020011

Challenge 2 – Spatial vs. Temporal Resolution Trade-off [so Rapidity of Detection vs Minimum Detectable FRP)

MTG FCI MWIR-LWIR Brightness Temp. Difference (1 km Data)

Southern Africa 13:00 UTC; 31 July 2024 FCI True Color 0.5km Fire Temperature 0.5km (3.8 and 2.2µm) 05.08.2023 10:00 UTC Demonstrating FCI's capabilities Observing fires in Portugal Preliminary results

Mitigation: Rapidity of Detection & Relatively Small Pixel Area

Challenge 3: Estimating Fire Emissions from AF Data

Different ways of estimating fire activity and associated emissions of gases and aerosols using Earth Observation.
Only way to effectively get information at regional / national / global scales consistently, and at temporal resolutions needed

"Bottom-Up"

20

"Top-Down"

Solution: Three Approaches to Convert FRP into Fire Emissions²¹

 $= 2.690 x, r^2 = 0.97$

n=36, p< 0.0001

• Assume fixed conversion factor between FRP and fuel consumption rate (e.g. from ground-based experiments).

- Derive the relationship from matching FRE and fuel consumption data (e.g. GFAS uses GFED-estimated dry matter consumption).

MODIS-FRE (PJ month-1)

Nguyen et al. (2023)

Geostationary FRP & Sentinel-5P Total Column CO Use in FREM 22

CO emissions derived from coefficients linking geostationary FRE to in-plume CO in different biomes.

Example for Three Fires

VIIRS RGB Image of Plumes

Sentinel-5P Total Column CO

Emission Coeffs for Six "Fire Biomes"

- Applied to Meteosat FRP record for Africa
- CO emission estimates very close to GFED4.1s derived using completely different data & method

Meteosat AF Pixels where FRE is Derived

First Evaluation of FREM Approach & Operational Product

Geostationary Active Fire Detections from METEOSAT-8 SEVIRI. Processed at Kings College London

Global, Real-Time Fire Information

Hiai

Low

Monday 07 September 2009 00UTC ECMWF/GEMS Forecast t+006 VT: Monday 07 September 2009 06UTC 700 hPa NRT Biomass-Burning Carbon Monoxide Tracer

LONDON

El Niño & Fire, Air Quality & Health in SE Asia

