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NASA Earth Observatory image by Joshua Stevens, using VIIRS data from NASA EOSDIS/LANCE and GIBS/Worldview, and the Suomi 
National Polar-orbiting Partnership. Story by Kathryn Hansen. From https://earthobservatory.nasa.gov/images/145189/wispy-clouds-
before-the-storm
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Image Credit: NASA/GSFC/JPL, MISR Science Team. https://earthobservatory.nasa.gov/images/849/misr-stereo-imaging-distinguishes-smoke-from-cloud



• When observed at an angle, high 
objects will appear to move 
relative to nadir imagery. 

• This scene shows smoke and cloud
over western Alaska.

• MISR takes images of each scene at 9 
different angles and 4 wavelengths.

• Left is the nadir visible image.
• Right is a stereo anaglyph, combining 

the 45 and 60⁰ cameras for viewing 
with red/blue lenses.

• Note lack of parallax for the low 
smoke plume compared to high 
cloud.

Can detect cloud from its parallax in imagery 4
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Image Credit: NASA/GSFC/JPL, MISR Science Team.
https://earthobservatory.nasa.gov/images/849/misr-stereo-imaging-distinguishes-smoke-from-cloud

http://www-misr.jpl.nasa.gov/


Images by Robert Simmon, using data from the U.S. Geological Survey and NASA. Caption by Kate Ramsayer, NASA’s Earth Science 
News Team. https://earthobservatory.nasa.gov/images/81210/new-landsat-finds-clouds-hiding-in-plain-sight



Images by Robert Simmon, using data from the U.S. Geological Survey and NASA. Caption by Kate Ramsayer, NASA’s Earth Science 
News Team. https://earthobservatory.nasa.gov/images/81210/new-landsat-finds-clouds-hiding-in-plain-sight



Can detect cloud through channel selection 7
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Images by Robert Simmon, using data from the U.S. Geological Survey and NASA. Caption by Kate Ramsayer, NASA’s Earth Science 
News Team. https://earthobservatory.nasa.gov/images/81210/new-landsat-finds-clouds-hiding-in-plain-sight

Left: True-colour image of the 
Aral Sea in 2013 from LCDM. 
Right: 1.38μm reflectance from 
the same scene, highlighting 
cirrus clouds as there is strong 
water absorption in this band. 
This channel has only available 
since Landsat 8.

Cirrus contamination is a major 
source of systematic error for 
virtually all Earth observation 
data.
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Images from Eumetsat; see 
https://eumetview.eumetsat.int/static-
images/MSG/RGB/ for more examples

Manual classification uses various combinations of radiances, 
brightness temperatures and their differences

https://eumetview.eumetsat.int/static-images/MSG/RGB/


SEVIRI Operational Cloud Mask
https://navigator.eumetsat.int/product/
EO:EUM:DAT:MSG:CLM

15th June 2020   07:12 UTC

Operational products tend to
mimic those choices

Images generated by Rui Song; see doi:10.5194/amt-17-2521-2024https://www.eumetsat.int/media/38993



Operational products increasingly 
automate decisions
SEVIRI Machine Learning Cloud Mask
https://navigator.eumetsat.int/product/E
O:EUM:CM:MSG:CMA_SEVIRI_V001

15th June 2020   07:12 UTC

Images generated by Rui Song; see doi:10.5194/amt-17-2521-2024



SEVIRI Dust Flag
Ashpole, I., and Washington, R. (2012),
J. Geophys. Res., 117, D08202, 
doi:10.1029/2011JD016845.

19th June 2020   19:42 UTC

Research products have a long
heritage of decision trees

𝑇𝑇108 ≥ 285
𝑇𝑇120 − 𝑇𝑇108 ≥ 0
𝑇𝑇108 − 𝑇𝑇087 < 10

𝑇𝑇108 − 𝑇𝑇087 − ⟨𝑇𝑇108 − 𝑇𝑇087⟩ < −2

Images generated by Rui Song; see doi:10.5194/amt-17-2521-2024



SEVIRI Dust RGB SEVIRI Dust Mask

SEVIRI Cloud Mask SEVIRI Cloud Mask (machine learning)

19th June 2020   19:42 
UTC

Images generated by Rui Song; see doi:10.5194/amt-17-2521-2024



13Neural networks can be quantitative rather than 
classification based, applying a threshold to convert to a flag
• Region on the SE coast of 

Australia from a Himawari
scene for 1 January 2020 at 
03:30 UTC.

 Top) False-colour
composites of the scene 
are presented in the 
left-hand column, 
showing (a) true-colour, 
(c) natural-colour and 
(e) dust RGBs.

 Bottom) Neural network 
classifications (b) the 
NN continuous cloud 
mask, (d) NN binary 
cloud mask and (f) a 
comparison of the three 
binary masks for the 
scene.

Fig. 10 of Robbins et al. 2023 doi:10.5194/amt-15-3031-2022



Neural networks are basically doing a decision tree 14
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SHAP analysis of network sensitivity. Fig. 6 of Robbins et al. 2023 doi:10.5194/amt-15-3031-2022
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Coverage from one day of AATSR 
observations combining classifications 
from Cloud and Aerosol CCI

Blue/Red are where the masks agree

Green/Orange are where they disagree

Image produced by Thomas Popp and researchers in Aerosol 
CCI

The difference between “is cloud” and “is not aerosol” 
excludes up to 20% of observations from datasets

15



16Nearby clouds can contaminate observations
even when not included within the observation
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Retrievals of aerosol (red-orange) 
and cloud (blue-green) around Mt. 
Kilauea on 9 Sep 2008 as seen by 
AATSR and processed by ORAC.

●Note the increase in aerosol 
optical depth as one approaches a 
cloud.

●Missing data (white) is common at 
the interface.



17Nearby clouds can contaminate observations
and the filtering method affects downstream analyses
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Figs. 1 & 9 from Christensen et al. 2017, doi:10.5194/acp-17-13151-2017
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• Masking clouds or aerosols from an image is a
common first-step in quality assurance in Earth 
observation processing.

• Many cloud masks rely on decision trees 
comparing various visible and/or infrared 
wavelengths.
• Neural networks increasingly automate the process but 

their performance is limited by the completeness of the 
training data.

• Clouds can “contaminate” nearby observations 
even if there isn’t strictly cloud present.

Top-of-atmosphere long-wave upwelling radiation 
from SEVIRI, by Matt Christensen.



where Iν is spectral radiance with the subscript denoting frequency, c is the 
speed of light, t is time, Ω is solid angle on the unit hemisphere, j is the 
emission coefficient, ks is the scattering opacity, ka is the absorption opacity, ρ
is mass density.

General radiative transfer 19
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Wikipedia says the radiative transfer equation is,

Temporal change, 
usually ignored

Spatial change, often 
written ∂I/∂τ

Loss due to scattering 
and absorption

Gain due to 
emission

Light coming from the 
rest of the atmosphere
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In practice, for each waveband 
we tend to consider which 
processes are significant.
• Shown is a schematic of 

radiative transfer in the 
retrieval I work with.

Solar and thermal radiative transfer
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Fig. 1 from doi:10.5194/amt-11-3397-2018
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