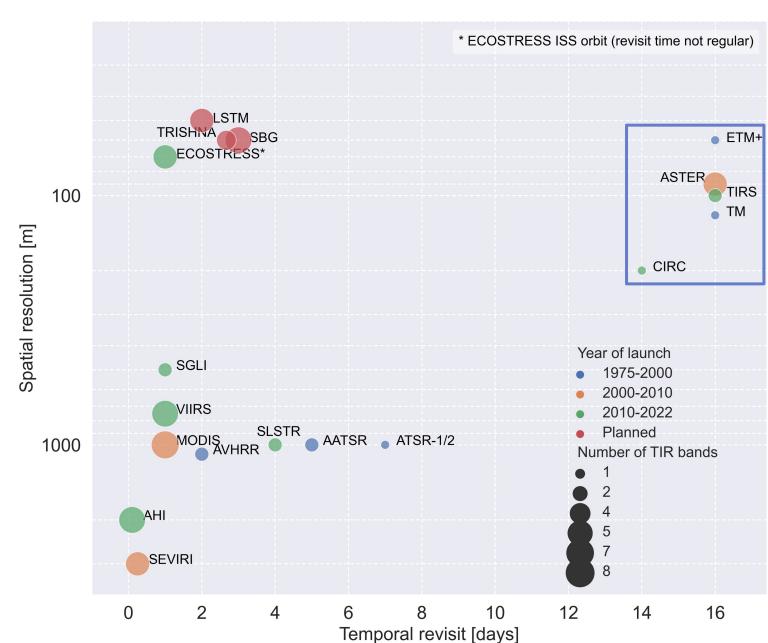


Source:

University of Zurich | Department of Geography

Low spatial resolution, high revisit

- Meteo/weather applications
- Ocean applications
- Climate modelling



Low spatial resolution, high revisit

- Meteo/weather applications
- Ocean applications
- Climate modelling

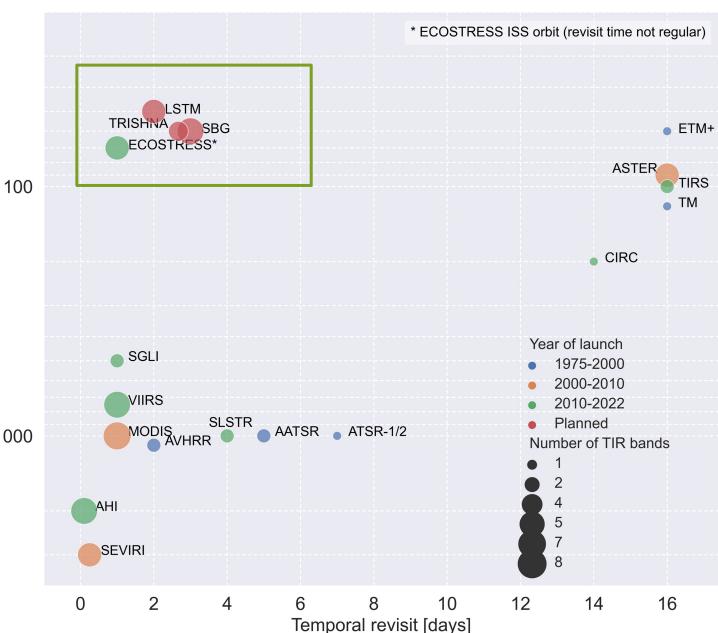
High spatial resolution, low revisit

LST applications (1-2 bands)

Low spatial resolution, high revisit

- Meteo/weather applications
- Ocean applications
- Climate modelling

High spatial resolution, low revisit

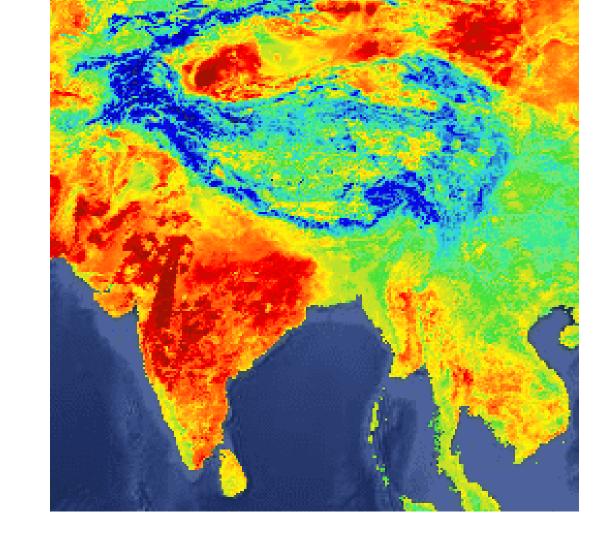

- LST applications (1-2 bands)

High spatial resolution, high revisit

- Gamechanger in LST research
- New applications with higher accuracy products, 1000
 e.g. agriculture, coastal/inland waters, cryosphere

Spatial resolution [m]

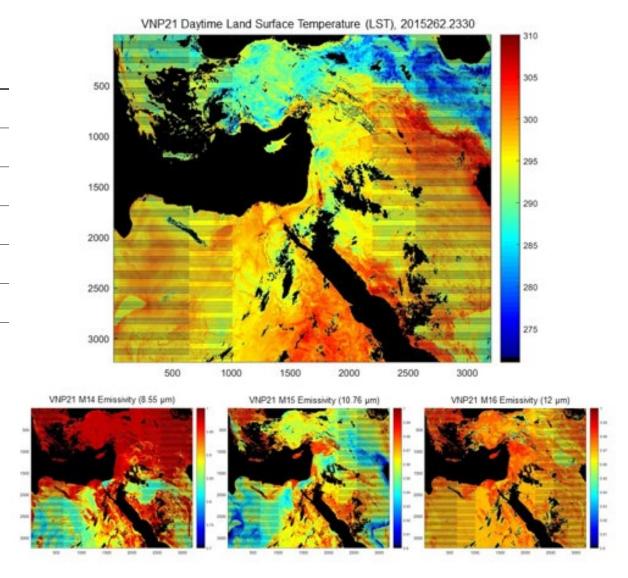
- More on Wednesday!!



MODIS

Platform	Aqua / Terra
Temporal coverage	1999 - present
TIR bands	10.78 - 11.28, 11.77 - 12.27
GSD	1km
Temporal revisit	12 hours
Orbit	Polar
Crossing time	10:30 (terra), 1:30 (aqua) am/pm

- Physics-based algorithm to retrieve the LST and Emissivity simultaneously (MOD11 and MOD21)
- Based on the ASTER Temperature Emissivity Separation (TES) algorithm
- Improved Water Vapor atmospheric correction scheme
- Global LST since 2000
- https://modis.gsfc.nasa.gov/data/dataprod/mod21.php


Source: https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part1_v5.pdf

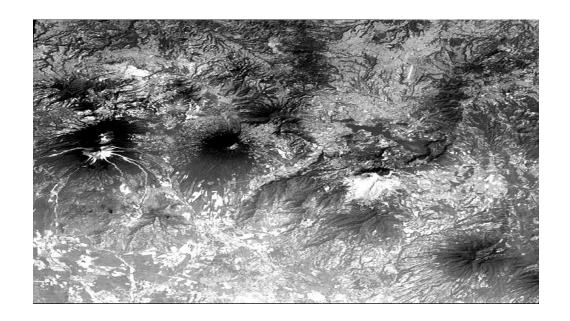
University of Zurich Department of Geography 2.12.2024

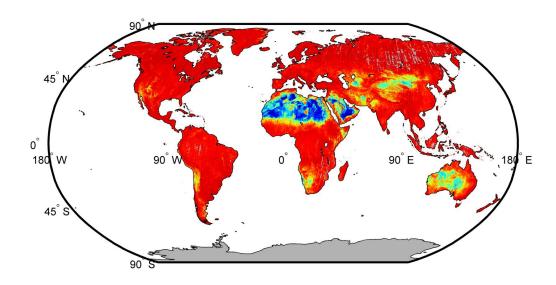
VIIRS

Platform	NSPP / NOAA 20
Temporal coverage	2011 – present, 2018 - present
TIR bands	10.26 - 11.26 11.54 - 12.49
GSD	750m
Temporal revisit	12 hours
Orbit	Polar
Crossing time	1:30 am/pm

- Same LST and E approach as MODIS to ensure consistency between the sensors
- https://viirsland.gsfc.nasa.gov/Products/NASA/LSTESDR.html

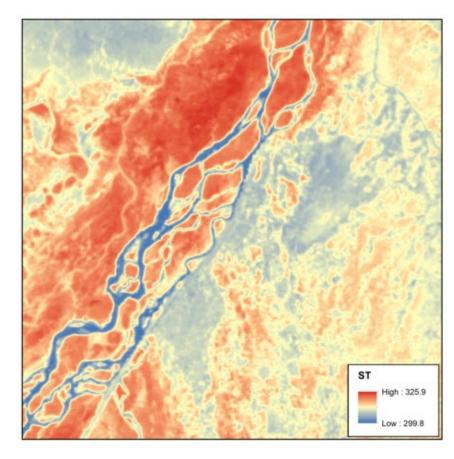
Source: https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part1_v5.pdf


University of Zurich Department of Geography 2.12.2024 7


ASTER

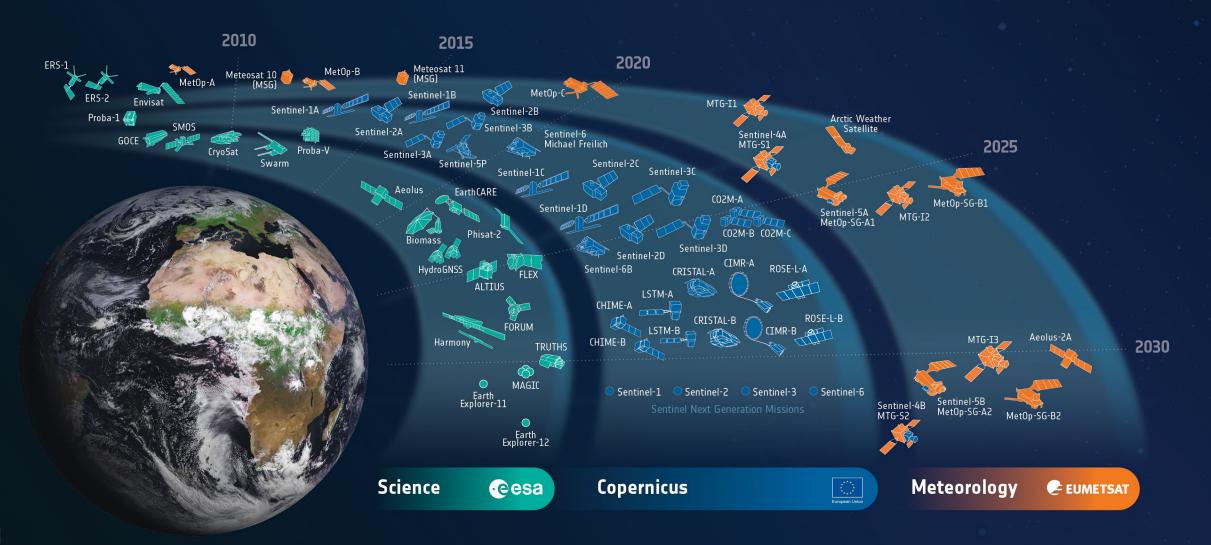
Temporal coverage1999 - presentTIR bands10.25-10.95, 10.95-11.65GSD90mTemporal revisit12 hoursOrbitPolarCrossing time10:30 am/pm	Platform	Terra
GSD 90m Temporal revisit 12 hours Orbit Polar	Temporal coverage	1999 - present
Temporal revisit 12 hours Orbit Polar	TIR bands	10.25-10.95, 10.95-11.65
Orbit Polar	GSD	90m
	Temporal revisit	12 hours
Crossing time 10:30 am/pm	Orbit	Polar
71	Crossing time	10:30 am/pm

- Surface Kinetic Temperature generated from 5 TIR bands
- Emissivity and LST are derived iteratively
- Temperature/Emissivity Separation (TES) algorithm along with atmospheric correction is used
- Emissivity database used in derivation of many other LST
- https://lpdaac.usgs.gov/products/ast_08v003/, https://emissivity.jpl.nasa.gov/aster-ged



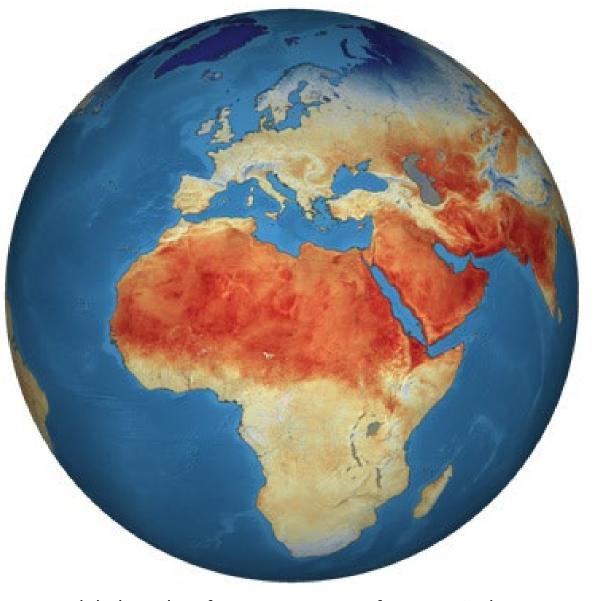
Landsat programme

Platform	TM (L4- / ETM+ / TIRS
Temporal coverage	1982- presents
TIR bands	10.40 - 12.50 [™] 10.40 - 12.50, 10.6 - 11.19, 11.50 - 12.51 (ETM+/TIRS)
GSD	120 m (30 m resampled) , 60 m (30 m), 100 m
Temporal revisit	16 days
Orbit	Polar
Crossing time	10am/10pm


- Part of U.S. Landsat Analysis Ready Data (ARD) products, collection 2 available
- ASTER Global Emissivity Database (GED) and NDVI data
- Atmospheric profiles of geopotential height, specific humidity, and air temperature extracted from reanalysis data
- https://www.usgs.gov/media/files/landsat-provisional-surface-temperature-product-guide

Source: Michelle A. Bouchard, based on Landsat data from the USGS

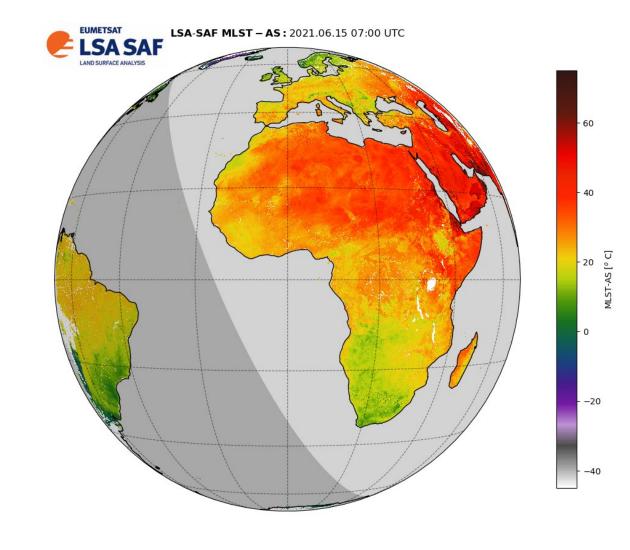
Source: https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part1_v5.pdf



Sentinel-3 SLSTR

Platform	Sentinel 3A/3B
Temporal coverage	2016-present (3A), 2018-present (3B)
TIR bands	10.45 - 11.24 11.57 - 12.48
GSD	1km
Temporal revisit	12 hours
Orbit	Polar
Crossing time	10 am/pm

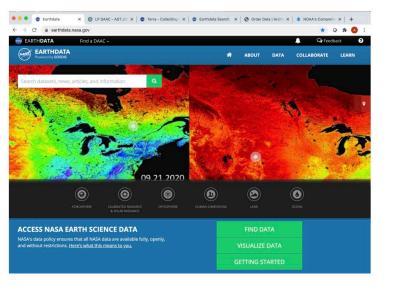
- Extend ATSR instruments from ERS-1,2 and Envisat
- Produce both LST and SST
- Uses nadir-only split-window approach to correct for atmospheric effe using the differential absorption in IR bands within the same atmospheric window
- Provides per pixel uncertainties
- https://sentiwiki.copernicus.eu/web/s3-mission

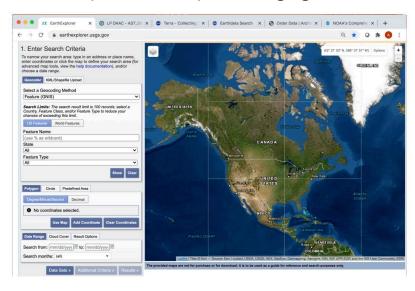


Global Land Surface Temperatures from Sentinel-3/SLSTR data (2018). [Credits: ESA]

MVIRI (MFG) / SEVIRI (MSG, MTG)

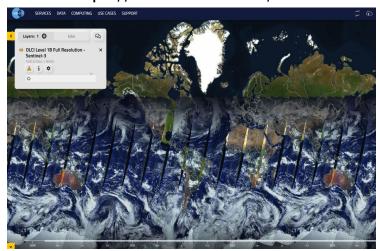
Platform	Meteosat 1 ^{st,} 2 nd 3 rd Generation
Temporal coverage	1983-present
TIR bands	8.3-9.1, 9.38-9.95, 9.8-11.8, 11-13,12.5- 14.4
GSD	3km
Temporal revisit	30 minutes
Orbit	Geostationary
Crossing time	-

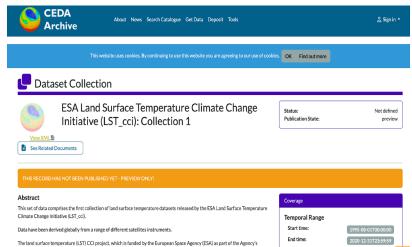

- https://navigator.eumetsat.int/product/EO:EUM:DAT:0367
- All-sky LST product provides skin temperature estimate every 30 min, for both clear and cloudy conditions
- Combines two operational algorithms (the clear sky component is derived from MSG level 2 product and cloudy sky component from the energy balance algorithm currently in use for the estimation of MSG 30-minute evapotranspiration

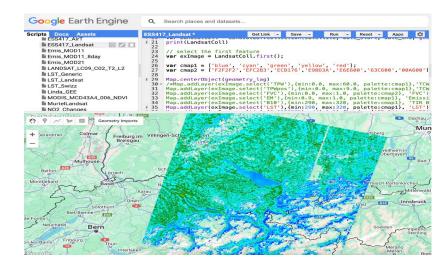

Source:

Data access

https://earthdata.nasa.gov/


https://earthexplorer.usgs.gov/


https://lpdaacsvc.cr.usgs.gov/appeears/ USGS AppEEARS


https://www.wekeo.eu/data

https://catalogue.ceda.ac.uk/uuid

https://developers.google.com/earth-engine/datasets

ENABLER DATA PRODUCTS

Orbital Parameters

ORBIT TYPF ALTITUDE INCLINATION LTDN **REVISIT TIME** MAX. OFF-NADIR ANGLE

Precursor (25Q2)

SUN-SYNCHRONOUS 516 KM 97.5 DEG 1:00 PM <1.5 DAYS +/-15 DEGREES

Constellation

SUN-SYNCHRONOUS 500 KM 10 PLANES < 3H +/-30 DEGREES

Image Characteristics

NUMBER OF CHANNELS

SENSOR BANDS

RGB + NIR + 2 x I WIR

BLUE 0.4-0.5 μm GREEN 0.5-0.57 μm RED 0.57-0.7 μm NIR 0.7-.09 μm LWIR1 10.5-11.5 μm LWIR2 11.5-12 μm

7x VNIR + 2x MWIR + 3x LWIR

RED-EDGE: 0.725-0.755μm AEROSOLS: 0.421 - 0.463μm NIR: 0.7-.0.9 μm

MWIR1: 3.2 -3.6μm MWIR2: 4.2 - 4.8um LWIR1: 10-11 μm* LWIR2: 11-12 μm* LWIR3: 8.7-9.1 μm

VIS 3 m VIS 25 m NIR 5 m NIR 30 m MWIR 15 m LWIR 100 m LWIR 30 m

20 KM (AT NADIR)

GRD AT NADIR

SWATH WIDTH (AT NADIR)

University of Zurich | Department of Geography

BLUE: 0.4-0.5 μm GREEN: 0.5-0.57 μm RED: 0.57-0.7 μm

WATER VAPOUR: 0.925 -0.965μm

Products

I WIR channel

Data Policy

Accessibility:

Tasking:

FOCUS STEREO

SNAPSHOT

L1: Top of atmosphere radiances per VNIR channel,

Temperature, Land Surface Emissivity per TIR band, Bottom of atmosphere reflectance per VNIR band,

L3: Evapotranspiration, Fire Radiative Power, etc.

Imagery will be available at low cost or free for

Tasked imagery will be followed by a sunset

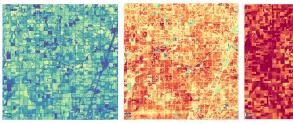
clause, ensuring eventual open access

researchers to promote scientific advancement

Top of atmosphere brightness temperature per

L2: Land Surface Temperature, Sea Surface

Total column of water vapour, Cloud mask



constellr, a new space company providing surface temperature intelligence for better resource accountability

Target Sectors Agriculture, Infrastructure, Water Monitoring...

Seasonal Drought, Illinois

11th of May 23 20th of June 23 10:30 am 10:30 am

Urban Heat Island, Melbourne

Product Portfolio

End of Q1 2025

LSTfusion

- 30m spatial resolution
- Fused data sources

3rd of May 23

10:30 am

- Large area coverage
- Reliable data frequency (8days)

for reliable large scale monitoring

University of Zurich Department of Geography

LSTprecision

Q2 2025

- 30m native resolution
- Proprietary data
- High temperature sensitivity
- · Up to 4 day revisit

for high-value asset monitoring

Q2 2025

LSTzoom

- 10m spatial resolution
- Proprietary data sharpened
- Visually best resolved
- Up to 4 day revisit

for zooming-in on anomalies

Deployment of the HiVE constellation

Swath

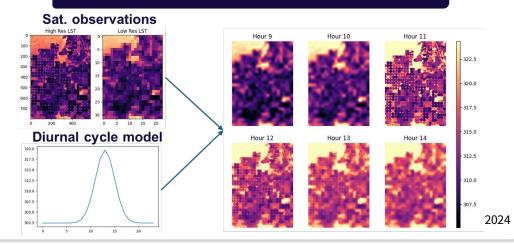
GSD (nadir)

L2 LST uncertainty

First free-flying satellites

HiVE Satellite #3, #4, #5 Minimum viable constellation for daily revisit

HiVE Constellation Operations at scale with up to 30 Satellites launched



18.5 km LWIR / 20km VNIR 30 m LWIR / 10 m VNIR

< 2.0 K

LSTfusion

Hydrosat Specifications

Requirement	VZ-1	Constellation (VZ-2 – 16)	
Coverage	Global	Global	
GSD	VNIR: 30 m; LWIR: 70 m	VNIR: 10 m; LWIR: 50 m	
Revisit (0° latitude)	6 days (off-nadir; 20° pointing); 46 days (nadir)	Sub-Daily (nadir)	
Spectral Wavelengths	~Landsat: 7-band VNIR; 2-band LWIR	>7-band VNIR; >2-band LWIR	
Overpass Time	10:00 am	1:30 pm	
LST Error	1.56 K	< Landsat	
Products	L1 Brightness T; L2 ST&E L3 ET; L1 Brightness T; L2 ST&E L4 soil moisture, crop info L4 soil moisture, crop info		

Data availability: Early Adopter product available now; VZ-1 data available 2025Q1

Data policy: Free/open for non-commercial/academic use; market pricing for commercial use

Hi, we are OroraTech

200m

Ground Sampling Distance (GSD)

MWIR: 3.8 μm

LWIR 1: 8.7 μm

LWIR 2: 11.45 μm

Spectral Wavelengths // 🔊

12 hours ~ **30** mins OTC-P1/P3

Revisit Time 🍪 🗟

Data is currently available

Data availability 📄 🗹

On-Orbit Fire Detection Active Fire Product (Beta) Land Surface Temperature (Beta)

Data Products 🏀 🛄

Case-Specific

Data policy 📄 📜

SatVu HotSat Instrument Specs and Product Offering

- HotSat is a mid-wave infrared (MWIR) single band high-resolution imager, capable of recording video sequences of up to 60 seconds at 25 frames/s.
- Our first satellite, HotSat-1, launched in June 2023, and collected 6 months of data.
- HotSat-2 is planned to launch end of 2025, followed shortly after by HotSat-3.
- Upcoming ESA Third Party Mission (TPM) Announcement of Opportunity, will give researchers access to the entire HotSat-1 archive.

Sensor type Mercury Cadmium Tel		Mercury Cadmium Telluride (MCT) array
Ground sampling distance		3.5 m (at 500 km orbit at nadir)
Sensor size		1280 x 1024 array with 8 μm pitch
Ground footprint		3.5 x 4.5 km at nadir
Spectral	Night	3.7 – 5.0 μm
Range	Day	4.2 – 5.0 μm
Revisit time		With 1 satellite, ~daily at up to 45° off nadir

PROTOTYPE AVAILABLE

All Frames Basic Product

Optimised for speed

- Pixel values delivered as Digital Numbers (DNs)
- 25 frames delivered
- Radiometrically corrected only
- Additional ancillary data delivered (AOCS, RPCs, UDM)

Value Proposition:

- Low latency delivery
- Processing flexibility

Use cases:

- Low latency required use cases like defence & intelligence and disaster response
- Use cases where tailored processing is required for advanced users

Visual Product

Optimised for photo-interpretation

- Pixel values delivered as Digital Numbers (DNs)
- Representing relative radiance differences within a scene
- Georeferenced 30 m CE90
- Ortho prototype available (including RPCs)

Value Proposition:

- · Signal photo-interpretability
- Improved geometry
- Signal to asset detection

Use cases:

- · High value industrial asset monitoring
- · Anomaly detection
- · Pattern of life interpretation

PROTOTYPE AVAILABLE

Night BOA Product

Optimised for analytics

- Pixel values delivered as surface radiance and brightness temperature
- Quantification of signal variability across the scene and inter scenes
- Georeferenced 30 m CE90
- Ortho prototype available (including RPCs)

Value Proposition:

- Analytics
- (Time series) comparability

Use cases:

- Signal change detection (asset operational capacity monitoring)
- Thermal in scene difference calculation

Confidential and proprietary information of Global Satellite Vu Limited